Mr-Cool's picture
Add new SentenceTransformer model.
927d0ef verified
metadata
base_model: Snowflake/snowflake-arctic-embed-m
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:678
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: What are some of the content types mentioned in the context?
    sentences:
      - >-
        and/or use cases that were not evaluated in initial testing. \\

        \end{tabular} & \begin{tabular}{l}

        Value Chain and Component \\

        Integration \\

        \end{tabular} \\

        \hline

        MG-3.1-004 & \begin{tabular}{l}

        Take reasonable measures to review training data for CBRN information,
        and \\

        intellectual property, and where appropriate, remove it. Implement
        reasonable \\

        measures to prevent, flag, or take other action in response to outputs
        that \\

        reproduce particular training data (e.g., plagiarized, trademarked,
        patented, \\

        licensed content or trade secret material). \\

        \end{tabular} & \begin{tabular}{l}

        Intellectual Property; CBRN \\

        Information or Capabilities \\

        \end{tabular} \\

        \hline

        \end{tabular}

        \end{center}
      - >-
        Bias and Homogenization \\

        \end{tabular} \\

        \hline

        GV-6.2-004 & \begin{tabular}{l}

        Establish policies and procedures for continuous monitoring of
        third-party GAI \\

        systems in deployment. \\

        \end{tabular} & \begin{tabular}{l}

        Value Chain and Component \\

        Integration \\

        \end{tabular} \\

        \hline

        GV-6.2-005 & \begin{tabular}{l}

        Establish policies and procedures that address GAI data redundancy,
        including \\

        model weights and other system artifacts. \\

        \end{tabular} & Harmful Bias and Homogenization \\

        \hline

        GV-6.2-006 & \begin{tabular}{l}

        Establish policies and procedures to test and manage risks related to
        rollover and \\

        fallback technologies for GAI systems, acknowledging that rollover and
        fallback \\

        may include manual processing. \\

        \end{tabular} & Information Integrity \\

        \hline

        GV-6.2-007 & \begin{tabular}{l}

        Review vendor contracts and avoid arbitrary or capricious termination of
        critical \\

        GAI technologies or vendor services and non-standard terms that may
        amplify or \\
      - >-
        time. \\

        \end{tabular} & \begin{tabular}{l}

        Information Integrity; Obscene, \\

        Degrading, and/or Abusive \\

        Content; Value Chain and \\

        Component Integration; Harmful \\

        Bias and Homogenization; \\

        Dangerous, Violent, or Hateful \\

        Content; CBRN Information or \\

        Capabilities \\

        \end{tabular} \\

        \hline

        GV-1.3-002 & \begin{tabular}{l}

        Establish minimum thresholds for performance or assurance criteria and
        review as \\

        part of deployment approval ("go/"no-go") policies, procedures, and
        processes, \\

        with reviewed processes and approval thresholds reflecting measurement
        of GAI \\

        capabilities and risks. \\

        \end{tabular} & \begin{tabular}{l}

        CBRN Information or Capabilities; \\

        Confabulation; Dangerous, \\

        Violent, or Hateful Content \\

        \end{tabular} \\

        \hline

        GV-1.3-003 & \begin{tabular}{l}

        Establish a test plan and response policy, before developing highly
        capable models, \\

        to periodically evaluate whether the model may misuse CBRN information
        or \\
  - source_sentence: >-
      What are the legal and regulatory requirements involving AI that need to
      be understood, managed, and documented?
    sentences:
      - >-
        GOVERN 1.1: Legal and regulatory requirements involving Al are
        understood, managed, and documented.


        \begin{center}

        \begin{tabular}{|l|l|l|}

        \hline

        Action ID & Suggested Action & GAI Risks \\

        \hline

        GV-1.1-001 & \begin{tabular}{l}

        Align GAI development and use with applicable laws and regulations,
        including \\

        those related to data privacy, copyright and intellectual property law.
        \\

        \end{tabular} & \begin{tabular}{l}

        Data Privacy; Harmful Bias and \\

        Homogenization; Intellectual \\

        Property \\

        \end{tabular} \\

        \hline

        \end{tabular}

        \end{center}


        Al Actor Tasks: Governance and Oversight\\

        ${ }^{14} \mathrm{AI}$ Actors are defined by the OECD as "those who play
        an active role in the AI system lifecycle, including organizations and
        individuals that deploy or operate AI." See Appendix A of the AI RMF for
        additional descriptions of Al Actors and AI Actor Tasks.
      - >-
        \begin{center}

        \begin{tabular}{|c|c|c|}

        \hline

        Action ID & Suggested Action & GAI Risks \\

        \hline

        GV-1.6-001 & \begin{tabular}{l}

        Enumerate organizational GAI systems for incorporation into AI system
        inventory \\

        and adjust AI system inventory requirements to account for GAI risks. \\

        \end{tabular} & Information Security \\

        \hline

        GV-1.6-002 & \begin{tabular}{l}

        Define any inventory exemptions in organizational policies for GAI
        systems \\

        embedded into application software. \\

        \end{tabular} & \begin{tabular}{l}

        Value Chain and Component \\

        Integration \\

        \end{tabular} \\

        \hline

        GV-1.6-003 & \begin{tabular}{l}

        In addition to general model, governance, and risk information, consider
        the \\

        following items in GAI system inventory entries: Data provenance
        information \\

        (e.g., source, signatures, versioning, watermarks); Known issues
        reported from \\

        internal bug tracking or external information sharing resources (e.g.,
        Al incident \\
      - >-
        Wei, J. et al. (2024) Long Form Factuality in Large Language Models.
        arXiv.
        \href{https://arxiv.org/pdf/2403.18802}{https://arxiv.org/pdf/2403.18802}


        Weidinger, L. et al. (2021) Ethical and social risks of harm from
        Language Models. arXiv.
        \href{https://arxiv.org/pdf/2112.04359}{https://arxiv.org/pdf/2112.04359}


        Weidinger, L. et al. (2023) Sociotechnical Safety Evaluation of
        Generative AI Systems. arXiv.
        \href{https://arxiv.org/pdf/2310.11986}{https://arxiv.org/pdf/2310.11986}


        Weidinger, L. et al. (2022) Taxonomy of Risks posed by Language Models.
        FAccT' 22.
        \href{https://dl.acm.org/doi/pdf/10.1145/3531146.3533088}{https://dl.acm.org/doi/pdf/10.1145/3531146.3533088}


        West, D. (2023) Al poses disproportionate risks to women. Brookings.
        \href{https://www.brookings.edu/articles/ai-poses-disproportionate-risks-to-women/}{https://www.brookings.edu/articles/ai-poses-disproportionate-risks-to-women/}
  - source_sentence: >-
      What are some known issues reported from internal bug tracking or external
      information sharing resources?
    sentences:
      - >-
        Kirchenbauer, J. et al. (2023) A Watermark for Large Language Models.
        OpenReview.
        \href{https://openreview.net/forum?id=aX8ig9X2a7}{https://openreview.net/forum?id=aX8ig9X2a7}


        Kleinberg, J. et al. (May 2021) Algorithmic monoculture and social
        welfare. PNAS.\\

        \href{https://www.pnas.org/doi/10.1073/pnas}{https://www.pnas.org/doi/10.1073/pnas}.
        2018340118\\

        Lakatos, S. (2023) A Revealing Picture. Graphika.
        \href{https://graphika.com/reports/a-revealing-picture}{https://graphika.com/reports/a-revealing-picture}\\

        Lee, H. et al. (2024) Deepfakes, Phrenology, Surveillance, and More! A
        Taxonomy of AI Privacy Risks. arXiv.
        \href{https://arxiv.org/pdf/2310.07879}{https://arxiv.org/pdf/2310.07879}


        Lenaerts-Bergmans, B. (2024) Data Poisoning: The Exploitation of
        Generative AI. Crowdstrike.
        \href{https://www.crowdstrike.com/cybersecurity-101/cyberattacks/data-poisoning/}{https://www.crowdstrike.com/cybersecurity-101/cyberattacks/data-poisoning/}
      - >-
        (e.g., source, signatures, versioning, watermarks); Known issues
        reported from \\

        internal bug tracking or external information sharing resources (e.g.,
        Al incident \\

        database, AVID, CVE, NVD, or OECD AI incident monitor); Human oversight
        roles \\

        and responsibilities; Special rights and considerations for intellectual
        property, \\

        licensed works, or personal, privileged, proprietary or sensitive data;
        Underlying \\

        foundation models, versions of underlying models, and access modes. \\

        \end{tabular} & \begin{tabular}{l}

        Data Privacy; Human-AI \\

        Configuration; Information \\

        Integrity; Intellectual Property; \\

        Value Chain and Component \\

        Integration \\

        \end{tabular} \\

        \hline

        \multicolumn{3}{|l|}{AI Actor Tasks: Governance and Oversight} \\

        \hline

        \end{tabular}

        \end{center}
      - >-
        Trustworthy AI Characteristic: Safe, Explainable and Interpretable

        \subsection*{2.2. Confabulation}

        "Confabulation" refers to a phenomenon in which GAI systems generate and
        confidently present erroneous or false content in response to prompts.
        Confabulations also include generated outputs that diverge from the
        prompts or other input or that contradict previously generated
        statements in the same context. These phenomena are colloquially also
        referred to as "hallucinations" or "fabrications."
  - source_sentence: >-
      Why do image generator models struggle to produce non-stereotyped content
      even when prompted?
    sentences:
      - >-
        Bias exists in many forms and can become ingrained in automated systems.
        Al systems, including GAI systems, can increase the speed and scale at
        which harmful biases manifest and are acted upon, potentially
        perpetuating and amplifying harms to individuals, groups, communities,
        organizations, and society. For example, when prompted to generate
        images of CEOs, doctors, lawyers, and judges, current text-to-image
        models underrepresent women and/or racial minorities, and people with
        disabilities. Image generator models have also produced biased or
        stereotyped output for various demographic groups and have difficulty
        producing non-stereotyped content even when the prompt specifically
        requests image features that are inconsistent with the stereotypes.
        Harmful bias in GAI models, which may stem from their training data, can
        also cause representational harms or perpetuate or exacerbate bias based
        on race, gender, disability, or other protected classes.
      - >-
        The White House (2016) Circular No. A-130, Managing Information as a
        Strategic Resource.
        \href{https://www.whitehouse.gov/wp-}{https://www.whitehouse.gov/wp-}\\

        content/uploads/legacy drupal files/omb/circulars/A130/a130revised.pdf\\

        The White House (2023) Executive Order on the Safe, Secure, and
        Trustworthy Development and Use of Artificial Intelligence.
        \href{https://www.whitehouse.gov/briefing-room/presidentialactions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-ofartificial-intelligence/}{https://www.whitehouse.gov/briefing-room/presidentialactions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-ofartificial-intelligence/}
      - >-
        %Overriding the \footnotetext command to hide the marker if its value is
        `0`

        \let\svfootnotetext\footnotetext

        \renewcommand\footnotetext[2][?]{%
          \if\relax#1\relax%
            \ifnum\value{footnote}=0\blfootnotetext{#2}\else\svfootnotetext{#2}\fi%
          \else%
            \if?#1\ifnum\value{footnote}=0\blfootnotetext{#2}\else\svfootnotetext{#2}\fi%
            \else\svfootnotetext[#1]{#2}\fi%
          \fi
        }


        \begin{document}

        \maketitle

        \section*{Artificial Intelligence Risk Management Framework: Generative
        Artificial Intelligence Profile}

        \section*{NIST Trustworthy and Responsible AI NIST AI 600-1}

        \section*{Artificial Intelligence Risk Management Framework: Generative
        Artificial Intelligence Profile}

        This publication is available free of charge from:\\

        \href{https://doi.org/10.6028/NIST.Al.600-1}{https://doi.org/10.6028/NIST.Al.600-1}


        July 2024


        \includegraphics[max width=\textwidth,
        center]{2024_09_22_1b8d52aa873ff5f60066g-02}\\

        U.S. Department of Commerce Gina M. Raimondo, Secretary
  - source_sentence: >-
      What processes should be updated for GAI acquisition and procurement
      vendor assessments?
    sentences:
      - >-
        Inventory all third-party entities with access to organizational content
        and \\

        establish approved GAI technology and service provider lists. \\

        \end{tabular} & \begin{tabular}{l}

        Value Chain and Component \\

        Integration \\

        \end{tabular} \\

        \hline

        GV-6.1-008 & \begin{tabular}{l}

        Maintain records of changes to content made by third parties to promote
        content \\

        provenance, including sources, timestamps, metadata. \\

        \end{tabular} & \begin{tabular}{l}

        Information Integrity; Value Chain \\

        and Component Integration; \\

        Intellectual Property \\

        \end{tabular} \\

        \hline

        GV-6.1-009 & \begin{tabular}{l}

        Update and integrate due diligence processes for GAI acquisition and \\

        procurement vendor assessments to include intellectual property, data
        privacy, \\

        security, and other risks. For example, update processes to: Address
        solutions that \\

        may rely on embedded GAI technologies; Address ongoing monitoring, \\

        assessments, and alerting, dynamic risk assessments, and real-time
        reporting \\
      - >-
        \item Information Integrity: Lowered barrier to entry to generate and
        support the exchange and consumption of content which may not
        distinguish fact from opinion or fiction or acknowledge uncertainties,
        or could be leveraged for large-scale dis- and mis-information
        campaigns.
          \item Information Security: Lowered barriers for offensive cyber capabilities, including via automated discovery and exploitation of vulnerabilities to ease hacking, malware, phishing, offensive cyber
        \end{enumerate}

        \footnotetext{${ }^{6}$ Some commenters have noted that the terms
        "hallucination" and "fabrication" anthropomorphize GAI, which itself is
        a risk related to GAI systems as it can inappropriately attribute human
        characteristics to non-human entities.\\
      - >-
        Evaluation data; Ethical considerations; Legal and regulatory
        requirements. \\

        \end{tabular} & \begin{tabular}{l}

        Information Integrity; Harmful Bias \\

        and Homogenization \\

        \end{tabular} \\

        \hline

        AI Actor Tasks: Al Deployment, Al Impact Assessment, Domain Experts,
        End-Users, Operation and Monitoring, TEVV &  &  \\

        \hline

        \end{tabular}

        \end{center}
model-index:
  - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy@1
            value: 0.8850574712643678
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9540229885057471
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 1
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8850574712643678
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.31800766283524895
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19999999999999996
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09999999999999998
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.02458492975734355
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.026500638569604086
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.027777777777777776
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.027777777777777776
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.20817571346541755
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.927969348659004
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.025776926351638994
            name: Cosine Map@100
          - type: dot_accuracy@1
            value: 0.8850574712643678
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.9540229885057471
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 1
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 1
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.8850574712643678
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.31800766283524895
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.19999999999999996
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.09999999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.02458492975734355
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.026500638569604086
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.027777777777777776
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.027777777777777776
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.20817571346541755
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.927969348659004
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.025776926351638994
            name: Dot Map@100

SentenceTransformer based on Snowflake/snowflake-arctic-embed-m

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-m
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Mr-Cool/midterm-finetuned-embedding")
# Run inference
sentences = [
    'What processes should be updated for GAI acquisition and procurement vendor assessments?',
    'Inventory all third-party entities with access to organizational content and \\\\\nestablish approved GAI technology and service provider lists. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nValue Chain and Component \\\\\nIntegration \\\\\n\\end{tabular} \\\\\n\\hline\nGV-6.1-008 & \\begin{tabular}{l}\nMaintain records of changes to content made by third parties to promote content \\\\\nprovenance, including sources, timestamps, metadata. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nInformation Integrity; Value Chain \\\\\nand Component Integration; \\\\\nIntellectual Property \\\\\n\\end{tabular} \\\\\n\\hline\nGV-6.1-009 & \\begin{tabular}{l}\nUpdate and integrate due diligence processes for GAI acquisition and \\\\\nprocurement vendor assessments to include intellectual property, data privacy, \\\\\nsecurity, and other risks. For example, update processes to: Address solutions that \\\\\nmay rely on embedded GAI technologies; Address ongoing monitoring, \\\\\nassessments, and alerting, dynamic risk assessments, and real-time reporting \\\\',
    'Evaluation data; Ethical considerations; Legal and regulatory requirements. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nInformation Integrity; Harmful Bias \\\\\nand Homogenization \\\\\n\\end{tabular} \\\\\n\\hline\nAI Actor Tasks: Al Deployment, Al Impact Assessment, Domain Experts, End-Users, Operation and Monitoring, TEVV &  &  \\\\\n\\hline\n\\end{tabular}\n\\end{center}',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.8851
cosine_accuracy@3 0.954
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.8851
cosine_precision@3 0.318
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.0246
cosine_recall@3 0.0265
cosine_recall@5 0.0278
cosine_recall@10 0.0278
cosine_ndcg@10 0.2082
cosine_mrr@10 0.928
cosine_map@100 0.0258
dot_accuracy@1 0.8851
dot_accuracy@3 0.954
dot_accuracy@5 1.0
dot_accuracy@10 1.0
dot_precision@1 0.8851
dot_precision@3 0.318
dot_precision@5 0.2
dot_precision@10 0.1
dot_recall@1 0.0246
dot_recall@3 0.0265
dot_recall@5 0.0278
dot_recall@10 0.0278
dot_ndcg@10 0.2082
dot_mrr@10 0.928
dot_map@100 0.0258

Training Details

Training Dataset

Unnamed Dataset

  • Size: 678 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 7 tokens
    • mean: 18.37 tokens
    • max: 36 tokens
    • min: 7 tokens
    • mean: 188.5 tokens
    • max: 396 tokens
  • Samples:
    sentence_0 sentence_1
    What are the characteristics of trustworthy AI? GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.
    How are the characteristics of trustworthy AI integrated into organizational policies? GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.
    Why is it important to integrate trustworthy AI characteristics into organizational processes? GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 20
  • per_device_eval_batch_size: 20
  • num_train_epochs: 5
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 20
  • per_device_eval_batch_size: 20
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step cosine_map@100
1.0 34 0.0250
1.4706 50 0.0258
2.0 68 0.0257
2.9412 100 0.0258
3.0 102 0.0258
4.0 136 0.0258
4.4118 150 0.0258
5.0 170 0.0258

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.44.2
  • PyTorch: 2.6.0.dev20240922+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}