|
---
|
|
base_model: Snowflake/snowflake-arctic-embed-m
|
|
datasets: []
|
|
language: []
|
|
library_name: sentence-transformers
|
|
metrics:
|
|
- cosine_accuracy@1
|
|
- cosine_accuracy@3
|
|
- cosine_accuracy@5
|
|
- cosine_accuracy@10
|
|
- cosine_precision@1
|
|
- cosine_precision@3
|
|
- cosine_precision@5
|
|
- cosine_precision@10
|
|
- cosine_recall@1
|
|
- cosine_recall@3
|
|
- cosine_recall@5
|
|
- cosine_recall@10
|
|
- cosine_ndcg@10
|
|
- cosine_mrr@10
|
|
- cosine_map@100
|
|
- dot_accuracy@1
|
|
- dot_accuracy@3
|
|
- dot_accuracy@5
|
|
- dot_accuracy@10
|
|
- dot_precision@1
|
|
- dot_precision@3
|
|
- dot_precision@5
|
|
- dot_precision@10
|
|
- dot_recall@1
|
|
- dot_recall@3
|
|
- dot_recall@5
|
|
- dot_recall@10
|
|
- dot_ndcg@10
|
|
- dot_mrr@10
|
|
- dot_map@100
|
|
pipeline_tag: sentence-similarity
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:678
|
|
- loss:MatryoshkaLoss
|
|
- loss:MultipleNegativesRankingLoss
|
|
widget:
|
|
- source_sentence: What are some of the content types mentioned in the context?
|
|
sentences:
|
|
- 'and/or use cases that were not evaluated in initial testing. \\
|
|
|
|
\end{tabular} & \begin{tabular}{l}
|
|
|
|
Value Chain and Component \\
|
|
|
|
Integration \\
|
|
|
|
\end{tabular} \\
|
|
|
|
\hline
|
|
|
|
MG-3.1-004 & \begin{tabular}{l}
|
|
|
|
Take reasonable measures to review training data for CBRN information, and \\
|
|
|
|
intellectual property, and where appropriate, remove it. Implement reasonable
|
|
\\
|
|
|
|
measures to prevent, flag, or take other action in response to outputs that \\
|
|
|
|
reproduce particular training data (e.g., plagiarized, trademarked, patented,
|
|
\\
|
|
|
|
licensed content or trade secret material). \\
|
|
|
|
\end{tabular} & \begin{tabular}{l}
|
|
|
|
Intellectual Property; CBRN \\
|
|
|
|
Information or Capabilities \\
|
|
|
|
\end{tabular} \\
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}'
|
|
- 'Bias and Homogenization \\
|
|
|
|
\end{tabular} \\
|
|
|
|
\hline
|
|
|
|
GV-6.2-004 & \begin{tabular}{l}
|
|
|
|
Establish policies and procedures for continuous monitoring of third-party GAI
|
|
\\
|
|
|
|
systems in deployment. \\
|
|
|
|
\end{tabular} & \begin{tabular}{l}
|
|
|
|
Value Chain and Component \\
|
|
|
|
Integration \\
|
|
|
|
\end{tabular} \\
|
|
|
|
\hline
|
|
|
|
GV-6.2-005 & \begin{tabular}{l}
|
|
|
|
Establish policies and procedures that address GAI data redundancy, including
|
|
\\
|
|
|
|
model weights and other system artifacts. \\
|
|
|
|
\end{tabular} & Harmful Bias and Homogenization \\
|
|
|
|
\hline
|
|
|
|
GV-6.2-006 & \begin{tabular}{l}
|
|
|
|
Establish policies and procedures to test and manage risks related to rollover
|
|
and \\
|
|
|
|
fallback technologies for GAI systems, acknowledging that rollover and fallback
|
|
\\
|
|
|
|
may include manual processing. \\
|
|
|
|
\end{tabular} & Information Integrity \\
|
|
|
|
\hline
|
|
|
|
GV-6.2-007 & \begin{tabular}{l}
|
|
|
|
Review vendor contracts and avoid arbitrary or capricious termination of critical
|
|
\\
|
|
|
|
GAI technologies or vendor services and non-standard terms that may amplify or
|
|
\\'
|
|
- 'time. \\
|
|
|
|
\end{tabular} & \begin{tabular}{l}
|
|
|
|
Information Integrity; Obscene, \\
|
|
|
|
Degrading, and/or Abusive \\
|
|
|
|
Content; Value Chain and \\
|
|
|
|
Component Integration; Harmful \\
|
|
|
|
Bias and Homogenization; \\
|
|
|
|
Dangerous, Violent, or Hateful \\
|
|
|
|
Content; CBRN Information or \\
|
|
|
|
Capabilities \\
|
|
|
|
\end{tabular} \\
|
|
|
|
\hline
|
|
|
|
GV-1.3-002 & \begin{tabular}{l}
|
|
|
|
Establish minimum thresholds for performance or assurance criteria and review
|
|
as \\
|
|
|
|
part of deployment approval ("go/"no-go") policies, procedures, and processes,
|
|
\\
|
|
|
|
with reviewed processes and approval thresholds reflecting measurement of GAI
|
|
\\
|
|
|
|
capabilities and risks. \\
|
|
|
|
\end{tabular} & \begin{tabular}{l}
|
|
|
|
CBRN Information or Capabilities; \\
|
|
|
|
Confabulation; Dangerous, \\
|
|
|
|
Violent, or Hateful Content \\
|
|
|
|
\end{tabular} \\
|
|
|
|
\hline
|
|
|
|
GV-1.3-003 & \begin{tabular}{l}
|
|
|
|
Establish a test plan and response policy, before developing highly capable models,
|
|
\\
|
|
|
|
to periodically evaluate whether the model may misuse CBRN information or \\'
|
|
- source_sentence: What are the legal and regulatory requirements involving AI that
|
|
need to be understood, managed, and documented?
|
|
sentences:
|
|
- 'GOVERN 1.1: Legal and regulatory requirements involving Al are understood, managed,
|
|
and documented.
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tabular}{|l|l|l|}
|
|
|
|
\hline
|
|
|
|
Action ID & Suggested Action & GAI Risks \\
|
|
|
|
\hline
|
|
|
|
GV-1.1-001 & \begin{tabular}{l}
|
|
|
|
Align GAI development and use with applicable laws and regulations, including
|
|
\\
|
|
|
|
those related to data privacy, copyright and intellectual property law. \\
|
|
|
|
\end{tabular} & \begin{tabular}{l}
|
|
|
|
Data Privacy; Harmful Bias and \\
|
|
|
|
Homogenization; Intellectual \\
|
|
|
|
Property \\
|
|
|
|
\end{tabular} \\
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
|
|
Al Actor Tasks: Governance and Oversight\\
|
|
|
|
${ }^{14} \mathrm{AI}$ Actors are defined by the OECD as "those who play an active
|
|
role in the AI system lifecycle, including organizations and individuals that
|
|
deploy or operate AI." See Appendix A of the AI RMF for additional descriptions
|
|
of Al Actors and AI Actor Tasks.'
|
|
- '\begin{center}
|
|
|
|
\begin{tabular}{|c|c|c|}
|
|
|
|
\hline
|
|
|
|
Action ID & Suggested Action & GAI Risks \\
|
|
|
|
\hline
|
|
|
|
GV-1.6-001 & \begin{tabular}{l}
|
|
|
|
Enumerate organizational GAI systems for incorporation into AI system inventory
|
|
\\
|
|
|
|
and adjust AI system inventory requirements to account for GAI risks. \\
|
|
|
|
\end{tabular} & Information Security \\
|
|
|
|
\hline
|
|
|
|
GV-1.6-002 & \begin{tabular}{l}
|
|
|
|
Define any inventory exemptions in organizational policies for GAI systems \\
|
|
|
|
embedded into application software. \\
|
|
|
|
\end{tabular} & \begin{tabular}{l}
|
|
|
|
Value Chain and Component \\
|
|
|
|
Integration \\
|
|
|
|
\end{tabular} \\
|
|
|
|
\hline
|
|
|
|
GV-1.6-003 & \begin{tabular}{l}
|
|
|
|
In addition to general model, governance, and risk information, consider the \\
|
|
|
|
following items in GAI system inventory entries: Data provenance information \\
|
|
|
|
(e.g., source, signatures, versioning, watermarks); Known issues reported from
|
|
\\
|
|
|
|
internal bug tracking or external information sharing resources (e.g., Al incident
|
|
\\'
|
|
- 'Wei, J. et al. (2024) Long Form Factuality in Large Language Models. arXiv. \href{https://arxiv.org/pdf/2403.18802}{https://arxiv.org/pdf/2403.18802}
|
|
|
|
|
|
Weidinger, L. et al. (2021) Ethical and social risks of harm from Language Models.
|
|
arXiv. \href{https://arxiv.org/pdf/2112.04359}{https://arxiv.org/pdf/2112.04359}
|
|
|
|
|
|
Weidinger, L. et al. (2023) Sociotechnical Safety Evaluation of Generative AI
|
|
Systems. arXiv. \href{https://arxiv.org/pdf/2310.11986}{https://arxiv.org/pdf/2310.11986}
|
|
|
|
|
|
Weidinger, L. et al. (2022) Taxonomy of Risks posed by Language Models. FAccT''
|
|
22. \href{https://dl.acm.org/doi/pdf/10.1145/3531146.3533088}{https://dl.acm.org/doi/pdf/10.1145/3531146.3533088}
|
|
|
|
|
|
West, D. (2023) Al poses disproportionate risks to women. Brookings. \href{https://www.brookings.edu/articles/ai-poses-disproportionate-risks-to-women/}{https://www.brookings.edu/articles/ai-poses-disproportionate-risks-to-women/}'
|
|
- source_sentence: What are some known issues reported from internal bug tracking
|
|
or external information sharing resources?
|
|
sentences:
|
|
- 'Kirchenbauer, J. et al. (2023) A Watermark for Large Language Models. OpenReview.
|
|
\href{https://openreview.net/forum?id=aX8ig9X2a7}{https://openreview.net/forum?id=aX8ig9X2a7}
|
|
|
|
|
|
Kleinberg, J. et al. (May 2021) Algorithmic monoculture and social welfare. PNAS.\\
|
|
|
|
\href{https://www.pnas.org/doi/10.1073/pnas}{https://www.pnas.org/doi/10.1073/pnas}.
|
|
2018340118\\
|
|
|
|
Lakatos, S. (2023) A Revealing Picture. Graphika. \href{https://graphika.com/reports/a-revealing-picture}{https://graphika.com/reports/a-revealing-picture}\\
|
|
|
|
Lee, H. et al. (2024) Deepfakes, Phrenology, Surveillance, and More! A Taxonomy
|
|
of AI Privacy Risks. arXiv. \href{https://arxiv.org/pdf/2310.07879}{https://arxiv.org/pdf/2310.07879}
|
|
|
|
|
|
Lenaerts-Bergmans, B. (2024) Data Poisoning: The Exploitation of Generative AI.
|
|
Crowdstrike. \href{https://www.crowdstrike.com/cybersecurity-101/cyberattacks/data-poisoning/}{https://www.crowdstrike.com/cybersecurity-101/cyberattacks/data-poisoning/}'
|
|
- '(e.g., source, signatures, versioning, watermarks); Known issues reported from
|
|
\\
|
|
|
|
internal bug tracking or external information sharing resources (e.g., Al incident
|
|
\\
|
|
|
|
database, AVID, CVE, NVD, or OECD AI incident monitor); Human oversight roles
|
|
\\
|
|
|
|
and responsibilities; Special rights and considerations for intellectual property,
|
|
\\
|
|
|
|
licensed works, or personal, privileged, proprietary or sensitive data; Underlying
|
|
\\
|
|
|
|
foundation models, versions of underlying models, and access modes. \\
|
|
|
|
\end{tabular} & \begin{tabular}{l}
|
|
|
|
Data Privacy; Human-AI \\
|
|
|
|
Configuration; Information \\
|
|
|
|
Integrity; Intellectual Property; \\
|
|
|
|
Value Chain and Component \\
|
|
|
|
Integration \\
|
|
|
|
\end{tabular} \\
|
|
|
|
\hline
|
|
|
|
\multicolumn{3}{|l|}{AI Actor Tasks: Governance and Oversight} \\
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}'
|
|
- 'Trustworthy AI Characteristic: Safe, Explainable and Interpretable
|
|
|
|
\subsection*{2.2. Confabulation}
|
|
|
|
"Confabulation" refers to a phenomenon in which GAI systems generate and confidently
|
|
present erroneous or false content in response to prompts. Confabulations also
|
|
include generated outputs that diverge from the prompts or other input or that
|
|
contradict previously generated statements in the same context. These phenomena
|
|
are colloquially also referred to as "hallucinations" or "fabrications."'
|
|
- source_sentence: Why do image generator models struggle to produce non-stereotyped
|
|
content even when prompted?
|
|
sentences:
|
|
- Bias exists in many forms and can become ingrained in automated systems. Al systems,
|
|
including GAI systems, can increase the speed and scale at which harmful biases
|
|
manifest and are acted upon, potentially perpetuating and amplifying harms to
|
|
individuals, groups, communities, organizations, and society. For example, when
|
|
prompted to generate images of CEOs, doctors, lawyers, and judges, current text-to-image
|
|
models underrepresent women and/or racial minorities, and people with disabilities.
|
|
Image generator models have also produced biased or stereotyped output for various
|
|
demographic groups and have difficulty producing non-stereotyped content even
|
|
when the prompt specifically requests image features that are inconsistent with
|
|
the stereotypes. Harmful bias in GAI models, which may stem from their training
|
|
data, can also cause representational harms or perpetuate or exacerbate bias based
|
|
on race, gender, disability, or other protected classes.
|
|
- 'The White House (2016) Circular No. A-130, Managing Information as a Strategic
|
|
Resource. \href{https://www.whitehouse.gov/wp-}{https://www.whitehouse.gov/wp-}\\
|
|
|
|
content/uploads/legacy drupal files/omb/circulars/A130/a130revised.pdf\\
|
|
|
|
The White House (2023) Executive Order on the Safe, Secure, and Trustworthy Development
|
|
and Use of Artificial Intelligence. \href{https://www.whitehouse.gov/briefing-room/presidentialactions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-ofartificial-intelligence/}{https://www.whitehouse.gov/briefing-room/presidentialactions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-ofartificial-intelligence/}'
|
|
- "%Overriding the \\footnotetext command to hide the marker if its value is `0`\n\
|
|
\\let\\svfootnotetext\\footnotetext\n\\renewcommand\\footnotetext[2][?]{%\n \\\
|
|
if\\relax#1\\relax%\n \\ifnum\\value{footnote}=0\\blfootnotetext{#2}\\else\\\
|
|
svfootnotetext{#2}\\fi%\n \\else%\n \\if?#1\\ifnum\\value{footnote}=0\\blfootnotetext{#2}\\\
|
|
else\\svfootnotetext{#2}\\fi%\n \\else\\svfootnotetext[#1]{#2}\\fi%\n \\fi\n\
|
|
}\n\n\\begin{document}\n\\maketitle\n\\section*{Artificial Intelligence Risk Management\
|
|
\ Framework: Generative Artificial Intelligence Profile}\n\\section*{NIST Trustworthy\
|
|
\ and Responsible AI NIST AI 600-1}\n\\section*{Artificial Intelligence Risk Management\
|
|
\ Framework: Generative Artificial Intelligence Profile}\nThis publication is\
|
|
\ available free of charge from:\\\\\n\\href{https://doi.org/10.6028/NIST.Al.600-1}{https://doi.org/10.6028/NIST.Al.600-1}\n\
|
|
\nJuly 2024\n\n\\includegraphics[max width=\\textwidth, center]{2024_09_22_1b8d52aa873ff5f60066g-02}\\\
|
|
\\\nU.S. Department of Commerce Gina M. Raimondo, Secretary"
|
|
- source_sentence: What processes should be updated for GAI acquisition and procurement
|
|
vendor assessments?
|
|
sentences:
|
|
- 'Inventory all third-party entities with access to organizational content and
|
|
\\
|
|
|
|
establish approved GAI technology and service provider lists. \\
|
|
|
|
\end{tabular} & \begin{tabular}{l}
|
|
|
|
Value Chain and Component \\
|
|
|
|
Integration \\
|
|
|
|
\end{tabular} \\
|
|
|
|
\hline
|
|
|
|
GV-6.1-008 & \begin{tabular}{l}
|
|
|
|
Maintain records of changes to content made by third parties to promote content
|
|
\\
|
|
|
|
provenance, including sources, timestamps, metadata. \\
|
|
|
|
\end{tabular} & \begin{tabular}{l}
|
|
|
|
Information Integrity; Value Chain \\
|
|
|
|
and Component Integration; \\
|
|
|
|
Intellectual Property \\
|
|
|
|
\end{tabular} \\
|
|
|
|
\hline
|
|
|
|
GV-6.1-009 & \begin{tabular}{l}
|
|
|
|
Update and integrate due diligence processes for GAI acquisition and \\
|
|
|
|
procurement vendor assessments to include intellectual property, data privacy,
|
|
\\
|
|
|
|
security, and other risks. For example, update processes to: Address solutions
|
|
that \\
|
|
|
|
may rely on embedded GAI technologies; Address ongoing monitoring, \\
|
|
|
|
assessments, and alerting, dynamic risk assessments, and real-time reporting \\'
|
|
- "\\item Information Integrity: Lowered barrier to entry to generate and support\
|
|
\ the exchange and consumption of content which may not distinguish fact from\
|
|
\ opinion or fiction or acknowledge uncertainties, or could be leveraged for large-scale\
|
|
\ dis- and mis-information campaigns.\n \\item Information Security: Lowered\
|
|
\ barriers for offensive cyber capabilities, including via automated discovery\
|
|
\ and exploitation of vulnerabilities to ease hacking, malware, phishing, offensive\
|
|
\ cyber\n\\end{enumerate}\n\\footnotetext{${ }^{6}$ Some commenters have noted\
|
|
\ that the terms \"hallucination\" and \"fabrication\" anthropomorphize GAI, which\
|
|
\ itself is a risk related to GAI systems as it can inappropriately attribute\
|
|
\ human characteristics to non-human entities.\\\\"
|
|
- 'Evaluation data; Ethical considerations; Legal and regulatory requirements. \\
|
|
|
|
\end{tabular} & \begin{tabular}{l}
|
|
|
|
Information Integrity; Harmful Bias \\
|
|
|
|
and Homogenization \\
|
|
|
|
\end{tabular} \\
|
|
|
|
\hline
|
|
|
|
AI Actor Tasks: Al Deployment, Al Impact Assessment, Domain Experts, End-Users,
|
|
Operation and Monitoring, TEVV & & \\
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}'
|
|
model-index:
|
|
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
|
|
results:
|
|
- task:
|
|
type: information-retrieval
|
|
name: Information Retrieval
|
|
dataset:
|
|
name: Unknown
|
|
type: unknown
|
|
metrics:
|
|
- type: cosine_accuracy@1
|
|
value: 0.8850574712643678
|
|
name: Cosine Accuracy@1
|
|
- type: cosine_accuracy@3
|
|
value: 0.9540229885057471
|
|
name: Cosine Accuracy@3
|
|
- type: cosine_accuracy@5
|
|
value: 1.0
|
|
name: Cosine Accuracy@5
|
|
- type: cosine_accuracy@10
|
|
value: 1.0
|
|
name: Cosine Accuracy@10
|
|
- type: cosine_precision@1
|
|
value: 0.8850574712643678
|
|
name: Cosine Precision@1
|
|
- type: cosine_precision@3
|
|
value: 0.31800766283524895
|
|
name: Cosine Precision@3
|
|
- type: cosine_precision@5
|
|
value: 0.19999999999999996
|
|
name: Cosine Precision@5
|
|
- type: cosine_precision@10
|
|
value: 0.09999999999999998
|
|
name: Cosine Precision@10
|
|
- type: cosine_recall@1
|
|
value: 0.02458492975734355
|
|
name: Cosine Recall@1
|
|
- type: cosine_recall@3
|
|
value: 0.026500638569604086
|
|
name: Cosine Recall@3
|
|
- type: cosine_recall@5
|
|
value: 0.027777777777777776
|
|
name: Cosine Recall@5
|
|
- type: cosine_recall@10
|
|
value: 0.027777777777777776
|
|
name: Cosine Recall@10
|
|
- type: cosine_ndcg@10
|
|
value: 0.20817571346541755
|
|
name: Cosine Ndcg@10
|
|
- type: cosine_mrr@10
|
|
value: 0.927969348659004
|
|
name: Cosine Mrr@10
|
|
- type: cosine_map@100
|
|
value: 0.025776926351638994
|
|
name: Cosine Map@100
|
|
- type: dot_accuracy@1
|
|
value: 0.8850574712643678
|
|
name: Dot Accuracy@1
|
|
- type: dot_accuracy@3
|
|
value: 0.9540229885057471
|
|
name: Dot Accuracy@3
|
|
- type: dot_accuracy@5
|
|
value: 1.0
|
|
name: Dot Accuracy@5
|
|
- type: dot_accuracy@10
|
|
value: 1.0
|
|
name: Dot Accuracy@10
|
|
- type: dot_precision@1
|
|
value: 0.8850574712643678
|
|
name: Dot Precision@1
|
|
- type: dot_precision@3
|
|
value: 0.31800766283524895
|
|
name: Dot Precision@3
|
|
- type: dot_precision@5
|
|
value: 0.19999999999999996
|
|
name: Dot Precision@5
|
|
- type: dot_precision@10
|
|
value: 0.09999999999999998
|
|
name: Dot Precision@10
|
|
- type: dot_recall@1
|
|
value: 0.02458492975734355
|
|
name: Dot Recall@1
|
|
- type: dot_recall@3
|
|
value: 0.026500638569604086
|
|
name: Dot Recall@3
|
|
- type: dot_recall@5
|
|
value: 0.027777777777777776
|
|
name: Dot Recall@5
|
|
- type: dot_recall@10
|
|
value: 0.027777777777777776
|
|
name: Dot Recall@10
|
|
- type: dot_ndcg@10
|
|
value: 0.20817571346541755
|
|
name: Dot Ndcg@10
|
|
- type: dot_mrr@10
|
|
value: 0.927969348659004
|
|
name: Dot Mrr@10
|
|
- type: dot_map@100
|
|
value: 0.025776926351638994
|
|
name: Dot Map@100
|
|
---
|
|
|
|
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
|
|
- **Maximum Sequence Length:** 512 tokens
|
|
- **Output Dimensionality:** 768 tokens
|
|
- **Similarity Function:** Cosine Similarity
|
|
<!-- - **Training Dataset:** Unknown -->
|
|
<!-- - **Language:** Unknown -->
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
(2): Normalize()
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("Mr-Cool/midterm-finetuned-embedding")
|
|
# Run inference
|
|
sentences = [
|
|
'What processes should be updated for GAI acquisition and procurement vendor assessments?',
|
|
'Inventory all third-party entities with access to organizational content and \\\\\nestablish approved GAI technology and service provider lists. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nValue Chain and Component \\\\\nIntegration \\\\\n\\end{tabular} \\\\\n\\hline\nGV-6.1-008 & \\begin{tabular}{l}\nMaintain records of changes to content made by third parties to promote content \\\\\nprovenance, including sources, timestamps, metadata. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nInformation Integrity; Value Chain \\\\\nand Component Integration; \\\\\nIntellectual Property \\\\\n\\end{tabular} \\\\\n\\hline\nGV-6.1-009 & \\begin{tabular}{l}\nUpdate and integrate due diligence processes for GAI acquisition and \\\\\nprocurement vendor assessments to include intellectual property, data privacy, \\\\\nsecurity, and other risks. For example, update processes to: Address solutions that \\\\\nmay rely on embedded GAI technologies; Address ongoing monitoring, \\\\\nassessments, and alerting, dynamic risk assessments, and real-time reporting \\\\',
|
|
'Evaluation data; Ethical considerations; Legal and regulatory requirements. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nInformation Integrity; Harmful Bias \\\\\nand Homogenization \\\\\n\\end{tabular} \\\\\n\\hline\nAI Actor Tasks: Al Deployment, Al Impact Assessment, Domain Experts, End-Users, Operation and Monitoring, TEVV & & \\\\\n\\hline\n\\end{tabular}\n\\end{center}',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Information Retrieval
|
|
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
|
|
|
| Metric | Value |
|
|
|:--------------------|:-----------|
|
|
| cosine_accuracy@1 | 0.8851 |
|
|
| cosine_accuracy@3 | 0.954 |
|
|
| cosine_accuracy@5 | 1.0 |
|
|
| cosine_accuracy@10 | 1.0 |
|
|
| cosine_precision@1 | 0.8851 |
|
|
| cosine_precision@3 | 0.318 |
|
|
| cosine_precision@5 | 0.2 |
|
|
| cosine_precision@10 | 0.1 |
|
|
| cosine_recall@1 | 0.0246 |
|
|
| cosine_recall@3 | 0.0265 |
|
|
| cosine_recall@5 | 0.0278 |
|
|
| cosine_recall@10 | 0.0278 |
|
|
| cosine_ndcg@10 | 0.2082 |
|
|
| cosine_mrr@10 | 0.928 |
|
|
| **cosine_map@100** | **0.0258** |
|
|
| dot_accuracy@1 | 0.8851 |
|
|
| dot_accuracy@3 | 0.954 |
|
|
| dot_accuracy@5 | 1.0 |
|
|
| dot_accuracy@10 | 1.0 |
|
|
| dot_precision@1 | 0.8851 |
|
|
| dot_precision@3 | 0.318 |
|
|
| dot_precision@5 | 0.2 |
|
|
| dot_precision@10 | 0.1 |
|
|
| dot_recall@1 | 0.0246 |
|
|
| dot_recall@3 | 0.0265 |
|
|
| dot_recall@5 | 0.0278 |
|
|
| dot_recall@10 | 0.0278 |
|
|
| dot_ndcg@10 | 0.2082 |
|
|
| dot_mrr@10 | 0.928 |
|
|
| dot_map@100 | 0.0258 |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### Unnamed Dataset
|
|
|
|
|
|
* Size: 678 training samples
|
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | sentence_0 | sentence_1 |
|
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
|
| type | string | string |
|
|
| details | <ul><li>min: 7 tokens</li><li>mean: 18.37 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 188.5 tokens</li><li>max: 396 tokens</li></ul> |
|
|
* Samples:
|
|
| sentence_0 | sentence_1 |
|
|
|:------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| <code>What are the characteristics of trustworthy AI?</code> | <code>GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.</code> |
|
|
| <code>How are the characteristics of trustworthy AI integrated into organizational policies?</code> | <code>GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.</code> |
|
|
| <code>Why is it important to integrate trustworthy AI characteristics into organizational processes?</code> | <code>GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.</code> |
|
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
|
```json
|
|
{
|
|
"loss": "MultipleNegativesRankingLoss",
|
|
"matryoshka_dims": [
|
|
768,
|
|
512,
|
|
256,
|
|
128,
|
|
64
|
|
],
|
|
"matryoshka_weights": [
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1
|
|
],
|
|
"n_dims_per_step": -1
|
|
}
|
|
```
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: steps
|
|
- `per_device_train_batch_size`: 20
|
|
- `per_device_eval_batch_size`: 20
|
|
- `num_train_epochs`: 5
|
|
- `multi_dataset_batch_sampler`: round_robin
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: steps
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 20
|
|
- `per_device_eval_batch_size`: 20
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `torch_empty_cache_steps`: None
|
|
- `learning_rate`: 5e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1
|
|
- `num_train_epochs`: 5
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.0
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: False
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: False
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `eval_on_start`: False
|
|
- `eval_use_gather_object`: False
|
|
- `batch_sampler`: batch_sampler
|
|
- `multi_dataset_batch_sampler`: round_robin
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | cosine_map@100 |
|
|
|:------:|:----:|:--------------:|
|
|
| 1.0 | 34 | 0.0250 |
|
|
| 1.4706 | 50 | 0.0258 |
|
|
| 2.0 | 68 | 0.0257 |
|
|
| 2.9412 | 100 | 0.0258 |
|
|
| 3.0 | 102 | 0.0258 |
|
|
| 4.0 | 136 | 0.0258 |
|
|
| 4.4118 | 150 | 0.0258 |
|
|
| 5.0 | 170 | 0.0258 |
|
|
|
|
|
|
### Framework Versions
|
|
- Python: 3.12.3
|
|
- Sentence Transformers: 3.0.1
|
|
- Transformers: 4.44.2
|
|
- PyTorch: 2.6.0.dev20240922+cu121
|
|
- Accelerate: 0.34.2
|
|
- Datasets: 3.0.0
|
|
- Tokenizers: 0.19.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
#### MatryoshkaLoss
|
|
```bibtex
|
|
@misc{kusupati2024matryoshka,
|
|
title={Matryoshka Representation Learning},
|
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
|
year={2024},
|
|
eprint={2205.13147},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.LG}
|
|
}
|
|
```
|
|
|
|
#### MultipleNegativesRankingLoss
|
|
```bibtex
|
|
@misc{henderson2017efficient,
|
|
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
|
year={2017},
|
|
eprint={1705.00652},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CL}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |