NastyaKorneeva's picture
End of training
b2262ed verified
|
raw
history blame
2.28 kB
metadata
license: mit
base_model: cointegrated/rubert-tiny2
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: my_awesome_wnut_model_
    results: []

my_awesome_wnut_model_

This model is a fine-tuned version of cointegrated/rubert-tiny2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1997
  • Precision: 0.3076
  • Recall: 0.4690
  • F1: 0.3716
  • Accuracy: 0.9322

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 7
  • eval_batch_size: 7
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 24

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.621 2.41 140 0.4025 0.0 0.0 0.0 0.9050
0.3224 4.83 280 0.2750 0.2036 0.2074 0.2055 0.9118
0.2421 7.24 420 0.2326 0.2706 0.3406 0.3016 0.9220
0.2061 9.66 560 0.2146 0.2968 0.4102 0.3444 0.9269
0.1779 12.07 700 0.2037 0.3125 0.4257 0.3604 0.9306
0.1606 14.48 840 0.2042 0.3044 0.4613 0.3668 0.9298
0.1544 16.9 980 0.2001 0.3101 0.4690 0.3734 0.9310
0.1402 19.31 1120 0.1991 0.3130 0.4690 0.3755 0.9316
0.139 21.72 1260 0.1997 0.3076 0.4690 0.3716 0.9322

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2