|
--- |
|
license: mit |
|
base_model: cointegrated/rubert-tiny2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: my_awesome_wnut_model_ |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# my_awesome_wnut_model_ |
|
|
|
This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1997 |
|
- Precision: 0.3076 |
|
- Recall: 0.4690 |
|
- F1: 0.3716 |
|
- Accuracy: 0.9322 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 7 |
|
- eval_batch_size: 7 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 24 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.621 | 2.41 | 140 | 0.4025 | 0.0 | 0.0 | 0.0 | 0.9050 | |
|
| 0.3224 | 4.83 | 280 | 0.2750 | 0.2036 | 0.2074 | 0.2055 | 0.9118 | |
|
| 0.2421 | 7.24 | 420 | 0.2326 | 0.2706 | 0.3406 | 0.3016 | 0.9220 | |
|
| 0.2061 | 9.66 | 560 | 0.2146 | 0.2968 | 0.4102 | 0.3444 | 0.9269 | |
|
| 0.1779 | 12.07 | 700 | 0.2037 | 0.3125 | 0.4257 | 0.3604 | 0.9306 | |
|
| 0.1606 | 14.48 | 840 | 0.2042 | 0.3044 | 0.4613 | 0.3668 | 0.9298 | |
|
| 0.1544 | 16.9 | 980 | 0.2001 | 0.3101 | 0.4690 | 0.3734 | 0.9310 | |
|
| 0.1402 | 19.31 | 1120 | 0.1991 | 0.3130 | 0.4690 | 0.3755 | 0.9316 | |
|
| 0.139 | 21.72 | 1260 | 0.1997 | 0.3076 | 0.4690 | 0.3716 | 0.9322 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.15.2 |
|
|