bert-finetuned-ner4 / README.md
Nathali99's picture
Upload tokenizer
ac54ec1 verified
|
raw
history blame
2.36 kB
metadata
base_model: bert-base-cased
license: apache-2.0
metrics:
  - precision
  - recall
  - f1
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: bert-finetuned-ner4
    results: []

bert-finetuned-ner4

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1250
  • Precision: 0.5977
  • Recall: 0.7121
  • F1: 0.6499
  • Accuracy: 0.9640

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2424 1.0 2489 0.2411 0.1538 0.3948 0.2214 0.9097
0.1952 2.0 4978 0.2152 0.2033 0.4518 0.2804 0.9223
0.1771 3.0 7467 0.1737 0.2826 0.4268 0.3401 0.9387
0.1404 4.0 9956 0.1531 0.3981 0.5237 0.4524 0.9479
0.126 5.0 12445 0.1395 0.4761 0.6188 0.5382 0.9542
0.1084 6.0 14934 0.1339 0.4772 0.6758 0.5594 0.9555
0.0981 7.0 17423 0.1353 0.5228 0.6861 0.5934 0.9591
0.0865 8.0 19912 0.1308 0.5924 0.6871 0.6363 0.9628
0.0826 9.0 22401 0.1250 0.5897 0.7126 0.6453 0.9630
0.0754 10.0 24890 0.1250 0.5977 0.7121 0.6499 0.9640

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1