|
--- |
|
license: apache-2.0 |
|
base_model: Malmika/T5-Small-Sinhala-Sumarization |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: T5-Small-Sinhala-Sumarization-test3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# T5-Small-Sinhala-Sumarization-test3 |
|
|
|
This model is a fine-tuned version of [Malmika/T5-Small-Sinhala-Sumarization](https://huggingface.co/Malmika/T5-Small-Sinhala-Sumarization) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0304 |
|
- Rouge1: 0.1355 |
|
- Rouge2: 0.0618 |
|
- Rougel: 0.1354 |
|
- Rougelsum: 0.1356 |
|
- Gen Len: 17.8198 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 0.0959 | 1.0 | 4333 | 0.0560 | 0.1357 | 0.062 | 0.1357 | 0.1358 | 17.8575 | |
|
| 0.0531 | 2.0 | 8666 | 0.0367 | 0.1355 | 0.0619 | 0.1355 | 0.1357 | 17.8214 | |
|
| 0.0406 | 3.0 | 12999 | 0.0350 | 0.1355 | 0.0619 | 0.1355 | 0.1357 | 17.8213 | |
|
| 0.0342 | 4.0 | 17332 | 0.0328 | 0.1355 | 0.0618 | 0.1354 | 0.1356 | 17.8198 | |
|
| 0.0323 | 5.0 | 21665 | 0.0304 | 0.1355 | 0.0618 | 0.1354 | 0.1356 | 17.8198 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.1 |
|
|