metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Teams across Delta have worked together to make an impact through enhanced
landing procedures, optimizations to flight routing and speed, and weight
reduction initiatives, saving over 20 million gallons of jet fuel in 2022
and 2023.
sentences:
- >-
What was the percentage increase in Services net sales from 2022 to
2023?
- >-
How much jet fuel did Delta Air Lines save between 2022 and 2023 through
optimizations in aircraft operations?
- >-
How did Ford Pro's EBIT in 2023 compare to the previous year, and what
contributed to this change?
- source_sentence: >-
On February 14, 2022, the State of Texas filed a lawsuit against us in
Texas state court (Texas v. Meta Platforms, Inc.) alleging that "tag
suggestions" and other uses of facial recognition technology violated the
Texas Capture or Use of Biometric Identifiers Act and the Texas Deceptive
Trade Practices-Consumer Protection Act, and seeking statutory damages and
injunctive relief.
sentences:
- >-
What did the auditor’s report dated February 9, 2024, state about the
effectiveness of Enphase Energy’s internal control over financial
reporting as of December 31, 2023?
- >-
What legal action did the State of Texas initiate against Meta
Platforms, Inc. on February 14, 2022?
- >-
What caused the pretax loss in the Corporate & Other segment to increase
in 2023 compared to 2022?
- source_sentence: >-
Our two operating segments are "Compute & Networking" and "Graphics."
Refer to Note 17 of the Notes to the Consolidated Financial Statements in
Part IV, Item 15 of this Annual Report on Form 10-K for additional
information.
sentences:
- What are the two operating segments of NVIDIA as mentioned in the text?
- How much did the gross margin increase in 2023 compared to 2022?
- >-
What is the total assets and shareholders' equity of Chubb Limited as of
December 31, 2023?
- source_sentence: >-
The increase in marketing and sales expenses in fiscal year 2023 was
mainly due to higher advertising and promotional spending related to Apex
Legends Mobile and the FIFA franchise.
sentences:
- >-
What are included in Part IV, Item 15(a)(1) of the Annual Report on Form
10-K?
- >-
What was the net income reported for the fiscal year ending in August
2023?
- >-
What was the primary cause of the increase in marketing and sales
expenses in fiscal year 2023?
- source_sentence: >-
Information on legal proceedings is included in Contact Email PRIOR
HISTORY: None PLACEHOLDER FOR ARBITRATION.
sentences:
- >-
Where can information about legal proceedings be found in the financial
statements?
- >-
What remaining authorization amount was available for share repurchases
as of January 28, 2023?
- >-
What is the total amount authorized for the repurchase of common stock
up to December 2023?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.71
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8428571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8771428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.71
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28095238095238095
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1754285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09142857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.71
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8428571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8771428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8151955748060781
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.783174603174603
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7866554834362436
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7028571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8457142857142858
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.88
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9157142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7028571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2819047619047619
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.176
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09157142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7028571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8457142857142858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.88
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9157142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8131832672898918
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7799625850340134
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7833067978748278
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6985714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8457142857142858
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8785714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6985714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2819047619047619
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17571428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0907142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6985714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8457142857142858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8785714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8072080679843728
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7746224489795912
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7782328948106179
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6914285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8428571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8714285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6914285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28095238095238095
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17428571428571427
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6914285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8428571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8714285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.80532196181792
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7725623582766435
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7764353709024747
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6757142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8114285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.85
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8842857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6757142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2704761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08842857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6757142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8114285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.85
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8842857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7835900962247281
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7508775510204081
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7557906355020412
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("NickyNicky/bge-base-financial-matryoshka")
sentences = [
'Information on legal proceedings is included in Contact Email PRIOR HISTORY: None PLACEHOLDER FOR ARBITRATION.',
'Where can information about legal proceedings be found in the financial statements?',
'What remaining authorization amount was available for share repurchases as of January 28, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.71 |
cosine_accuracy@3 |
0.8429 |
cosine_accuracy@5 |
0.8771 |
cosine_accuracy@10 |
0.9143 |
cosine_precision@1 |
0.71 |
cosine_precision@3 |
0.281 |
cosine_precision@5 |
0.1754 |
cosine_precision@10 |
0.0914 |
cosine_recall@1 |
0.71 |
cosine_recall@3 |
0.8429 |
cosine_recall@5 |
0.8771 |
cosine_recall@10 |
0.9143 |
cosine_ndcg@10 |
0.8152 |
cosine_mrr@10 |
0.7832 |
cosine_map@100 |
0.7867 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7029 |
cosine_accuracy@3 |
0.8457 |
cosine_accuracy@5 |
0.88 |
cosine_accuracy@10 |
0.9157 |
cosine_precision@1 |
0.7029 |
cosine_precision@3 |
0.2819 |
cosine_precision@5 |
0.176 |
cosine_precision@10 |
0.0916 |
cosine_recall@1 |
0.7029 |
cosine_recall@3 |
0.8457 |
cosine_recall@5 |
0.88 |
cosine_recall@10 |
0.9157 |
cosine_ndcg@10 |
0.8132 |
cosine_mrr@10 |
0.78 |
cosine_map@100 |
0.7833 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6986 |
cosine_accuracy@3 |
0.8457 |
cosine_accuracy@5 |
0.8786 |
cosine_accuracy@10 |
0.9071 |
cosine_precision@1 |
0.6986 |
cosine_precision@3 |
0.2819 |
cosine_precision@5 |
0.1757 |
cosine_precision@10 |
0.0907 |
cosine_recall@1 |
0.6986 |
cosine_recall@3 |
0.8457 |
cosine_recall@5 |
0.8786 |
cosine_recall@10 |
0.9071 |
cosine_ndcg@10 |
0.8072 |
cosine_mrr@10 |
0.7746 |
cosine_map@100 |
0.7782 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6914 |
cosine_accuracy@3 |
0.8429 |
cosine_accuracy@5 |
0.8714 |
cosine_accuracy@10 |
0.9057 |
cosine_precision@1 |
0.6914 |
cosine_precision@3 |
0.281 |
cosine_precision@5 |
0.1743 |
cosine_precision@10 |
0.0906 |
cosine_recall@1 |
0.6914 |
cosine_recall@3 |
0.8429 |
cosine_recall@5 |
0.8714 |
cosine_recall@10 |
0.9057 |
cosine_ndcg@10 |
0.8053 |
cosine_mrr@10 |
0.7726 |
cosine_map@100 |
0.7764 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6757 |
cosine_accuracy@3 |
0.8114 |
cosine_accuracy@5 |
0.85 |
cosine_accuracy@10 |
0.8843 |
cosine_precision@1 |
0.6757 |
cosine_precision@3 |
0.2705 |
cosine_precision@5 |
0.17 |
cosine_precision@10 |
0.0884 |
cosine_recall@1 |
0.6757 |
cosine_recall@3 |
0.8114 |
cosine_recall@5 |
0.85 |
cosine_recall@10 |
0.8843 |
cosine_ndcg@10 |
0.7836 |
cosine_mrr@10 |
0.7509 |
cosine_map@100 |
0.7558 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 4 tokens
- mean: 47.19 tokens
- max: 512 tokens
|
- min: 7 tokens
- mean: 20.59 tokens
- max: 41 tokens
|
- Samples:
positive |
anchor |
For the year ended December 31, 2023, $305 million was recorded as a distribution against retained earnings for dividends. |
How much in dividends was recorded against retained earnings in 2023? |
In February 2023, we announced a 10% increase in our quarterly cash dividend to $2.09 per share. |
By how much did the company increase its quarterly cash dividend in February 2023? |
Depreciation and amortization totaled $4,856 as recorded in the financial statements. |
How much did depreciation and amortization total to in the financial statements? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 40
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 20
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 40
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 20
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.9114 |
9 |
- |
0.7124 |
0.7361 |
0.7366 |
0.6672 |
0.7443 |
1.0127 |
10 |
2.0952 |
- |
- |
- |
- |
- |
1.9241 |
19 |
- |
0.7437 |
0.7561 |
0.7628 |
0.7172 |
0.7653 |
2.0253 |
20 |
1.1175 |
- |
- |
- |
- |
- |
2.9367 |
29 |
- |
0.7623 |
0.7733 |
0.7694 |
0.7288 |
0.7723 |
3.0380 |
30 |
0.6104 |
- |
- |
- |
- |
- |
3.9494 |
39 |
- |
0.7723 |
0.7746 |
0.7804 |
0.7405 |
0.7789 |
4.0506 |
40 |
0.4106 |
- |
- |
- |
- |
- |
4.9620 |
49 |
- |
0.7777 |
0.7759 |
0.7820 |
0.7475 |
0.7842 |
5.0633 |
50 |
0.314 |
- |
- |
- |
- |
- |
5.9747 |
59 |
- |
0.7802 |
0.7796 |
0.7856 |
0.7548 |
0.7839 |
6.0759 |
60 |
0.2423 |
- |
- |
- |
- |
- |
6.9873 |
69 |
- |
0.7756 |
0.7772 |
0.7834 |
0.7535 |
0.7818 |
7.0886 |
70 |
0.1962 |
- |
- |
- |
- |
- |
8.0 |
79 |
- |
0.7741 |
0.7774 |
0.7841 |
0.7551 |
0.7822 |
8.1013 |
80 |
0.1627 |
- |
- |
- |
- |
- |
8.9114 |
88 |
- |
0.7724 |
0.7752 |
0.7796 |
0.7528 |
0.7816 |
9.1139 |
90 |
0.1379 |
- |
- |
- |
- |
- |
9.9241 |
98 |
- |
0.7691 |
0.7782 |
0.7834 |
0.7559 |
0.7836 |
10.1266 |
100 |
0.1249 |
- |
- |
- |
- |
- |
10.9367 |
108 |
- |
0.7728 |
0.7802 |
0.7831 |
0.7536 |
0.7848 |
11.1392 |
110 |
0.1105 |
- |
- |
- |
- |
- |
11.9494 |
118 |
- |
0.7748 |
0.7785 |
0.7814 |
0.7558 |
0.7851 |
12.1519 |
120 |
0.1147 |
- |
- |
- |
- |
- |
12.9620 |
128 |
- |
0.7756 |
0.7788 |
0.7839 |
0.7550 |
0.7864 |
13.1646 |
130 |
0.098 |
- |
- |
- |
- |
- |
13.9747 |
138 |
- |
0.7767 |
0.7792 |
0.7828 |
0.7557 |
0.7873 |
14.1772 |
140 |
0.0927 |
- |
- |
- |
- |
- |
14.9873 |
148 |
- |
0.7758 |
0.7804 |
0.7847 |
0.7569 |
0.7892 |
15.1899 |
150 |
0.0921 |
- |
- |
- |
- |
- |
16.0 |
158 |
- |
0.7760 |
0.7794 |
0.7831 |
0.7551 |
0.7873 |
16.2025 |
160 |
0.0896 |
- |
- |
- |
- |
- |
16.9114 |
167 |
- |
0.7753 |
0.7799 |
0.7841 |
0.7570 |
0.7888 |
17.2152 |
170 |
0.0881 |
- |
- |
- |
- |
- |
17.9241 |
177 |
- |
0.7763 |
0.7787 |
0.7842 |
0.7561 |
0.7867 |
18.2278 |
180 |
0.0884 |
0.7764 |
0.7782 |
0.7833 |
0.7558 |
0.7867 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}