NickyNicky's picture
Add new SentenceTransformer model.
ef6fb41 verified
metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      Teams across Delta have worked together to make an impact through enhanced
      landing procedures, optimizations to flight routing and speed, and weight
      reduction initiatives, saving over 20 million gallons of jet fuel in 2022
      and 2023.
    sentences:
      - >-
        What was the percentage increase in Services net sales from 2022 to
        2023?
      - >-
        How much jet fuel did Delta Air Lines save between 2022 and 2023 through
        optimizations in aircraft operations?
      - >-
        How did Ford Pro's EBIT in 2023 compare to the previous year, and what
        contributed to this change?
  - source_sentence: >-
      On February 14, 2022, the State of Texas filed a lawsuit against us in
      Texas state court (Texas v. Meta Platforms, Inc.) alleging that "tag
      suggestions" and other uses of facial recognition technology violated the
      Texas Capture or Use of Biometric Identifiers Act and the Texas Deceptive
      Trade Practices-Consumer Protection Act, and seeking statutory damages and
      injunctive relief.
    sentences:
      - >-
        What did the auditor’s report dated February 9, 2024, state about the
        effectiveness of Enphase Energy’s internal control over financial
        reporting as of December 31, 2023?
      - >-
        What legal action did the State of Texas initiate against Meta
        Platforms, Inc. on February 14, 2022?
      - >-
        What caused the pretax loss in the Corporate & Other segment to increase
        in 2023 compared to 2022?
  - source_sentence: >-
      Our two operating segments are "Compute & Networking" and "Graphics."
      Refer to Note 17 of the Notes to the Consolidated Financial Statements in
      Part IV, Item 15 of this Annual Report on Form 10-K for additional
      information.
    sentences:
      - What are the two operating segments of NVIDIA as mentioned in the text?
      - How much did the gross margin increase in 2023 compared to 2022?
      - >-
        What is the total assets and shareholders' equity of Chubb Limited as of
        December 31, 2023?
  - source_sentence: >-
      The increase in marketing and sales expenses in fiscal year 2023 was
      mainly due to higher advertising and promotional spending related to Apex
      Legends Mobile and the FIFA franchise.
    sentences:
      - >-
        What are included in Part IV, Item 15(a)(1) of the Annual Report on Form
        10-K?
      - >-
        What was the net income reported for the fiscal year ending in August
        2023?
      - >-
        What was the primary cause of the increase in marketing and sales
        expenses in fiscal year 2023?
  - source_sentence: >-
      Information on legal proceedings is included in Contact Email  PRIOR
      HISTORY: None PLACEHOLDER FOR ARBITRATION.
    sentences:
      - >-
        Where can information about legal proceedings be found in the financial
        statements?
      - >-
        What remaining authorization amount was available for share repurchases
        as of January 28, 2023?
      - >-
        What is the total amount authorized for the repurchase of common stock
        up to December 2023?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.71
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8428571428571429
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8771428571428571
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9142857142857143
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.71
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.28095238095238095
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1754285714285714
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09142857142857141
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.71
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8428571428571429
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8771428571428571
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9142857142857143
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8151955748060781
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.783174603174603
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7866554834362436
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.7028571428571428
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8457142857142858
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.88
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9157142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7028571428571428
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2819047619047619
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.176
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09157142857142857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7028571428571428
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8457142857142858
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.88
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9157142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8131832672898918
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7799625850340134
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7833067978748278
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6985714285714286
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8457142857142858
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8785714285714286
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9071428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6985714285714286
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2819047619047619
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17571428571428568
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0907142857142857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6985714285714286
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8457142857142858
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8785714285714286
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9071428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8072080679843728
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7746224489795912
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7782328948106179
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6914285714285714
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8428571428571429
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8714285714285714
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9057142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6914285714285714
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.28095238095238095
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17428571428571427
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09057142857142855
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6914285714285714
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8428571428571429
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8714285714285714
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9057142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.80532196181792
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7725623582766435
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7764353709024747
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.6757142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8114285714285714
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.85
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8842857142857142
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6757142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2704761904761904
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16999999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08842857142857141
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6757142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8114285714285714
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.85
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8842857142857142
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7835900962247281
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7508775510204081
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7557906355020412
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("NickyNicky/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'Information on legal proceedings is included in Contact Email  PRIOR HISTORY: None PLACEHOLDER FOR ARBITRATION.',
    'Where can information about legal proceedings be found in the financial statements?',
    'What remaining authorization amount was available for share repurchases as of January 28, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.71
cosine_accuracy@3 0.8429
cosine_accuracy@5 0.8771
cosine_accuracy@10 0.9143
cosine_precision@1 0.71
cosine_precision@3 0.281
cosine_precision@5 0.1754
cosine_precision@10 0.0914
cosine_recall@1 0.71
cosine_recall@3 0.8429
cosine_recall@5 0.8771
cosine_recall@10 0.9143
cosine_ndcg@10 0.8152
cosine_mrr@10 0.7832
cosine_map@100 0.7867

Information Retrieval

Metric Value
cosine_accuracy@1 0.7029
cosine_accuracy@3 0.8457
cosine_accuracy@5 0.88
cosine_accuracy@10 0.9157
cosine_precision@1 0.7029
cosine_precision@3 0.2819
cosine_precision@5 0.176
cosine_precision@10 0.0916
cosine_recall@1 0.7029
cosine_recall@3 0.8457
cosine_recall@5 0.88
cosine_recall@10 0.9157
cosine_ndcg@10 0.8132
cosine_mrr@10 0.78
cosine_map@100 0.7833

Information Retrieval

Metric Value
cosine_accuracy@1 0.6986
cosine_accuracy@3 0.8457
cosine_accuracy@5 0.8786
cosine_accuracy@10 0.9071
cosine_precision@1 0.6986
cosine_precision@3 0.2819
cosine_precision@5 0.1757
cosine_precision@10 0.0907
cosine_recall@1 0.6986
cosine_recall@3 0.8457
cosine_recall@5 0.8786
cosine_recall@10 0.9071
cosine_ndcg@10 0.8072
cosine_mrr@10 0.7746
cosine_map@100 0.7782

Information Retrieval

Metric Value
cosine_accuracy@1 0.6914
cosine_accuracy@3 0.8429
cosine_accuracy@5 0.8714
cosine_accuracy@10 0.9057
cosine_precision@1 0.6914
cosine_precision@3 0.281
cosine_precision@5 0.1743
cosine_precision@10 0.0906
cosine_recall@1 0.6914
cosine_recall@3 0.8429
cosine_recall@5 0.8714
cosine_recall@10 0.9057
cosine_ndcg@10 0.8053
cosine_mrr@10 0.7726
cosine_map@100 0.7764

Information Retrieval

Metric Value
cosine_accuracy@1 0.6757
cosine_accuracy@3 0.8114
cosine_accuracy@5 0.85
cosine_accuracy@10 0.8843
cosine_precision@1 0.6757
cosine_precision@3 0.2705
cosine_precision@5 0.17
cosine_precision@10 0.0884
cosine_recall@1 0.6757
cosine_recall@3 0.8114
cosine_recall@5 0.85
cosine_recall@10 0.8843
cosine_ndcg@10 0.7836
cosine_mrr@10 0.7509
cosine_map@100 0.7558

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 4 tokens
    • mean: 47.19 tokens
    • max: 512 tokens
    • min: 7 tokens
    • mean: 20.59 tokens
    • max: 41 tokens
  • Samples:
    positive anchor
    For the year ended December 31, 2023, $305 million was recorded as a distribution against retained earnings for dividends. How much in dividends was recorded against retained earnings in 2023?
    In February 2023, we announced a 10% increase in our quarterly cash dividend to $2.09 per share. By how much did the company increase its quarterly cash dividend in February 2023?
    Depreciation and amortization totaled $4,856 as recorded in the financial statements. How much did depreciation and amortization total to in the financial statements?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 40
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 20
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 40
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 20
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.9114 9 - 0.7124 0.7361 0.7366 0.6672 0.7443
1.0127 10 2.0952 - - - - -
1.9241 19 - 0.7437 0.7561 0.7628 0.7172 0.7653
2.0253 20 1.1175 - - - - -
2.9367 29 - 0.7623 0.7733 0.7694 0.7288 0.7723
3.0380 30 0.6104 - - - - -
3.9494 39 - 0.7723 0.7746 0.7804 0.7405 0.7789
4.0506 40 0.4106 - - - - -
4.9620 49 - 0.7777 0.7759 0.7820 0.7475 0.7842
5.0633 50 0.314 - - - - -
5.9747 59 - 0.7802 0.7796 0.7856 0.7548 0.7839
6.0759 60 0.2423 - - - - -
6.9873 69 - 0.7756 0.7772 0.7834 0.7535 0.7818
7.0886 70 0.1962 - - - - -
8.0 79 - 0.7741 0.7774 0.7841 0.7551 0.7822
8.1013 80 0.1627 - - - - -
8.9114 88 - 0.7724 0.7752 0.7796 0.7528 0.7816
9.1139 90 0.1379 - - - - -
9.9241 98 - 0.7691 0.7782 0.7834 0.7559 0.7836
10.1266 100 0.1249 - - - - -
10.9367 108 - 0.7728 0.7802 0.7831 0.7536 0.7848
11.1392 110 0.1105 - - - - -
11.9494 118 - 0.7748 0.7785 0.7814 0.7558 0.7851
12.1519 120 0.1147 - - - - -
12.9620 128 - 0.7756 0.7788 0.7839 0.7550 0.7864
13.1646 130 0.098 - - - - -
13.9747 138 - 0.7767 0.7792 0.7828 0.7557 0.7873
14.1772 140 0.0927 - - - - -
14.9873 148 - 0.7758 0.7804 0.7847 0.7569 0.7892
15.1899 150 0.0921 - - - - -
16.0 158 - 0.7760 0.7794 0.7831 0.7551 0.7873
16.2025 160 0.0896 - - - - -
16.9114 167 - 0.7753 0.7799 0.7841 0.7570 0.7888
17.2152 170 0.0881 - - - - -
17.9241 177 - 0.7763 0.7787 0.7842 0.7561 0.7867
18.2278 180 0.0884 0.7764 0.7782 0.7833 0.7558 0.7867

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.2.0+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}