|
--- |
|
language: |
|
- ar |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:2772052 |
|
- loss:MultipleNegativesRankingLoss |
|
- loss:SoftmaxLoss |
|
- loss:CoSENTLoss |
|
base_model: google-bert/bert-base-multilingual-cased |
|
datasets: |
|
- Omartificial-Intelligence-Space/Arabic-stsb |
|
- Omartificial-Intelligence-Space/Arabic-Quora-Duplicates |
|
widget: |
|
- source_sentence: امرأة تكتب شيئاً |
|
sentences: |
|
- قد يكون من الممكن أن يوجد نظام شمسي مثل نظامنا خارج المجرة |
|
- امرأة تقطع البصل الأخضر. |
|
- مراهق يتحدث إلى فتاة عبر كاميرا الإنترنت |
|
- source_sentence: لاعب التزلج على الجليد يقفز فوق برميل |
|
sentences: |
|
- الرجل كان يمشي |
|
- رجل عجوز يجلس في غرفة الانتظار بالمستشفى. |
|
- متزلج على الجليد يقفز |
|
- source_sentence: العديد من النساء يرتدين ملابس الشرق الأوسط من الذهب والأزرق والأصفر |
|
والأحمر ويؤدون رقصة. |
|
sentences: |
|
- الناس توقفوا على جانب الطريق |
|
- هناك على الأقل إمرأتين |
|
- المرأة وحدها نائمة في قاربها على القمر |
|
- source_sentence: الرجل يرتدي قميصاً أزرق. |
|
sentences: |
|
- رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة حمراء |
|
مع الماء في الخلفية. |
|
- الرجل يجلس بجانب لوحة لنفسه |
|
- رجل يرتدي قميص أسود يعزف على الجيتار. |
|
- source_sentence: ما هي الدروس التي يمكن أن نتعلمها من أدولف هتلر؟ |
|
sentences: |
|
- ما هي الدروس التي يمكن أن نتعلمها من أدولف هتلر؟ |
|
- ما مدى قربنا من الحرب العالمية؟ |
|
- هل حرق وقود الطائرات يذوب أعمدة الصلب؟ |
|
pipeline_tag: sentence-similarity |
|
--- |
|
|
|
# SentenceTransformer based on google-bert/bert-base-multilingual-cased |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the all-nli-pair, all-nli-pair-class, all-nli-pair-score, all-nli-triplet, [stsb](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb) and [quora](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) <!-- at revision 3f076fdb1ab68d5b2880cb87a0886f315b8146f8 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Datasets:** |
|
- all-nli-pair |
|
- all-nli-pair-class |
|
- all-nli-pair-score |
|
- all-nli-triplet |
|
- [stsb](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb) |
|
- [quora](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates) |
|
- **Language:** ar |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Omartificial-Intelligence-Space/Arabic-base-all-nli-stsb-quora") |
|
# Run inference |
|
sentences = [ |
|
'ما هي الدروس التي يمكن أن نتعلمها من أدولف هتلر؟', |
|
'ما هي الدروس التي يمكن أن نتعلمها من أدولف هتلر؟', |
|
'ما مدى قربنا من الحرب العالمية؟', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Datasets |
|
|
|
#### all-nli-pair |
|
|
|
* Dataset: all-nli-pair |
|
* Size: 314,315 training samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 24.43 tokens</li><li>max: 88 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.73 tokens</li><li>max: 45 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:------------------------------------------------------------|:--------------------------------------------| |
|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | |
|
| <code>أطفال يبتسمون و يلوحون للكاميرا</code> | <code>هناك أطفال حاضرون</code> | |
|
| <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
#### all-nli-pair-class |
|
|
|
* Dataset: all-nli-pair-class |
|
* Size: 942,069 training samples |
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | premise | hypothesis | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 24.78 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.55 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> | |
|
* Samples: |
|
| premise | hypothesis | label | |
|
|:-----------------------------------------------|:--------------------------------------------|:---------------| |
|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص يقوم بتدريب حصانه للمنافسة</code> | <code>1</code> | |
|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في مطعم، يطلب عجة.</code> | <code>2</code> | |
|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>0</code> | |
|
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) |
|
|
|
#### all-nli-pair-score |
|
|
|
* Dataset: all-nli-pair-score |
|
* Size: 942,069 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 24.78 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.55 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-----------------------------------------------|:--------------------------------------------|:-----------------| |
|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص يقوم بتدريب حصانه للمنافسة</code> | <code>0.5</code> | |
|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في مطعم، يطلب عجة.</code> | <code>0.0</code> | |
|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>1.0</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
#### all-nli-triplet |
|
|
|
* Dataset: all-nli-triplet |
|
* Size: 557,850 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 12.54 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.06 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.13 tokens</li><li>max: 70 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:------------------------------------------------------------|:--------------------------------------------|:------------------------------------| |
|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>شخص في مطعم، يطلب عجة.</code> | |
|
| <code>أطفال يبتسمون و يلوحون للكاميرا</code> | <code>هناك أطفال حاضرون</code> | <code>الاطفال يتجهمون</code> | |
|
| <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code> | <code>الصبي يتزلج على الرصيف</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
#### stsb |
|
|
|
* Dataset: [stsb](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb) at [7c6c4bd](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb/tree/7c6c4bd31a465a0f3ed1a3704a31f2682a0f65be) |
|
* Size: 5,749 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 11.68 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.44 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-----------------------------------------------|:--------------------------------------------------------|:------------------| |
|
| <code>طائرة ستقلع</code> | <code>طائرة جوية ستقلع</code> | <code>1.0</code> | |
|
| <code>رجل يعزف على ناي كبير</code> | <code>رجل يعزف على الناي.</code> | <code>0.76</code> | |
|
| <code>رجل ينشر الجبن الممزق على البيتزا</code> | <code>رجل ينشر الجبن الممزق على بيتزا غير مطبوخة</code> | <code>0.76</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
#### quora |
|
|
|
* Dataset: [quora](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates) at [7d49308](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates/tree/7d49308a21bbad3a2762d11f2e8c0cbcc86510fe) |
|
* Size: 10,000 training samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 19.69 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 20.15 tokens</li><li>max: 73 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:-----------------------------------------------------------------------|:------------------------------------------------------------------------------------------| |
|
| <code>علم التنجيم: أنا برج الجدي الشمس القمر والقبعة الشمسية...</code> | <code>أنا برج الجدي الثلاثي (الشمس والقمر والصعود في برج الجدي) ماذا يقول هذا عني؟</code> | |
|
| <code>كيف أكون جيولوجياً جيداً؟</code> | <code>ماذا علي أن أفعل لأكون جيولوجياً عظيماً؟</code> | |
|
| <code>كيف أقرأ وأجد تعليقاتي على يوتيوب؟</code> | <code>كيف يمكنني رؤية كل تعليقاتي على اليوتيوب؟</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Datasets |
|
|
|
#### all-nli-triplet |
|
|
|
* Dataset: all-nli-triplet |
|
* Size: 6,584 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 25.81 tokens</li><li>max: 125 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.09 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.35 tokens</li><li>max: 42 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:---------------------------------------------------| |
|
| <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>إمرأتان يحملان حزمة</code> | <code>الرجال يتشاجرون خارج مطعم</code> | |
|
| <code>طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.</code> | <code>طفلين يرتديان قميصاً مرقماً يغسلون أيديهم</code> | <code>طفلين يرتديان سترة يذهبان إلى المدرسة</code> | |
|
| <code>رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس</code> | <code>رجل يبيع الدونات لعميل</code> | <code>امرأة تشرب قهوتها في مقهى صغير</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
#### stsb |
|
|
|
* Dataset: [stsb](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb) at [7c6c4bd](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb/tree/7c6c4bd31a465a0f3ed1a3704a31f2682a0f65be) |
|
* Size: 1,500 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 20.19 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 20.09 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:--------------------------------------|:---------------------------------------|:------------------| |
|
| <code>رجل يرتدي قبعة صلبة يرقص</code> | <code>رجل يرتدي قبعة صلبة يرقص.</code> | <code>1.0</code> | |
|
| <code>طفل صغير يركب حصاناً.</code> | <code>طفل يركب حصاناً.</code> | <code>0.95</code> | |
|
| <code>رجل يطعم فأراً لأفعى</code> | <code>الرجل يطعم الفأر للثعبان.</code> | <code>1.0</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
#### quora |
|
|
|
* Dataset: [quora](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates) at [7d49308](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates/tree/7d49308a21bbad3a2762d11f2e8c0cbcc86510fe) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 19.66 tokens</li><li>max: 73 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.17 tokens</li><li>max: 96 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:-------------------------------------------------------------------|:---------------------------------------------------------------------------| |
|
| <code>ما هو قرارك في السنة الجديدة؟</code> | <code>ما الذي يمكن أن يكون قراري للعام الجديد لعام 2017؟</code> | |
|
| <code>هل يجب أن أشتري هاتف آيفون 6 أو سامسونج غالاكسي إس 7؟</code> | <code>أيهما أفضل: الـ iPhone 6S Plus أو الـ Samsung Galaxy S7 Edge؟</code> | |
|
| <code>ما هي الاختلافات بين التجاوز والتراجع؟</code> | <code>ما الفرق بين التجاوز والتراجع؟</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 128 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | |
|
|:------:|:-----:|:-------------:| |
|
| 0.0231 | 500 | 5.0061 | |
|
| 0.0462 | 1000 | 4.7876 | |
|
| 0.0693 | 1500 | 4.6618 | |
|
| 0.0923 | 2000 | 4.7337 | |
|
| 0.1154 | 2500 | 4.5945 | |
|
| 0.1385 | 3000 | 4.7536 | |
|
| 0.1616 | 3500 | 4.619 | |
|
| 0.1847 | 4000 | 4.4761 | |
|
| 0.2078 | 4500 | 4.4454 | |
|
| 0.2309 | 5000 | 4.6376 | |
|
| 0.2539 | 5500 | 4.5513 | |
|
| 0.2770 | 6000 | 4.5619 | |
|
| 0.3001 | 6500 | 4.3416 | |
|
| 0.3232 | 7000 | 4.7372 | |
|
| 0.3463 | 7500 | 4.5906 | |
|
| 0.3694 | 8000 | 4.6546 | |
|
| 0.3924 | 8500 | 4.2452 | |
|
| 0.4155 | 9000 | 4.684 | |
|
| 0.4386 | 9500 | 4.426 | |
|
| 0.4617 | 10000 | 4.2539 | |
|
| 0.4848 | 10500 | 4.3224 | |
|
| 0.5079 | 11000 | 4.4046 | |
|
| 0.5310 | 11500 | 4.4644 | |
|
| 0.5540 | 12000 | 4.4542 | |
|
| 0.5771 | 12500 | 4.6026 | |
|
| 0.6002 | 13000 | 4.3519 | |
|
| 0.6233 | 13500 | 4.5135 | |
|
| 0.6464 | 14000 | 4.3318 | |
|
| 0.6695 | 14500 | 4.4465 | |
|
| 0.6926 | 15000 | 3.9692 | |
|
| 0.7156 | 15500 | 4.2084 | |
|
| 0.7387 | 16000 | 4.2217 | |
|
| 0.7618 | 16500 | 4.2791 | |
|
| 0.7849 | 17000 | 4.5962 | |
|
| 0.8080 | 17500 | 4.5871 | |
|
| 0.8311 | 18000 | 4.3271 | |
|
| 0.8541 | 18500 | 4.1688 | |
|
| 0.8772 | 19000 | 4.2081 | |
|
| 0.9003 | 19500 | 4.2867 | |
|
| 0.9234 | 20000 | 4.5474 | |
|
| 0.9465 | 20500 | 4.5257 | |
|
| 0.9696 | 21000 | 3.8461 | |
|
| 0.9927 | 21500 | 4.1254 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.9.18 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.40.0 |
|
- PyTorch: 2.2.2+cu121 |
|
- Accelerate: 0.26.1 |
|
- Datasets: 2.19.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers and SoftmaxLoss |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |