Piro17's picture
update model card README.md
c4d97cf
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: finetuned-fer2013-balanced
    results: []

finetuned-fer2013-balanced

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0183
  • Accuracy: 0.6362
  • Precision: 0.6312
  • Recall: 0.6362
  • F1: 0.6310

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 17
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.3969 1.0 267 1.3735 0.4996 0.4776 0.4996 0.4436
1.2341 2.0 534 1.2239 0.5442 0.5430 0.5442 0.5108
1.1363 3.0 801 1.1585 0.5758 0.5715 0.5758 0.5638
1.0894 4.0 1068 1.1087 0.5912 0.5827 0.5912 0.5706
1.0666 5.0 1335 1.0655 0.6184 0.6111 0.6184 0.6082
0.9219 6.0 1602 1.0520 0.6233 0.6153 0.6233 0.6136
0.943 7.0 1869 1.0331 0.6299 0.6238 0.6299 0.6231
0.8906 8.0 2136 1.0238 0.6318 0.6252 0.6318 0.6239
0.8854 9.0 2403 1.0196 0.6341 0.6313 0.6341 0.6298
0.8991 10.0 2670 1.0183 0.6362 0.6312 0.6362 0.6310

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2