Edit model card

hq_fer2013notestaugM

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8297
  • Accuracy: 0.6998
  • Precision: 0.7022
  • Recall: 0.6998
  • F1: 0.6999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 17
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.2858 1.0 353 1.2814 0.5545 0.5432 0.5545 0.5122
1.0247 2.0 706 1.0343 0.6288 0.6235 0.6288 0.6136
0.9403 3.0 1059 0.9500 0.6607 0.6592 0.6607 0.6522
0.8501 4.0 1412 0.8971 0.6803 0.6761 0.6803 0.6760
0.8148 5.0 1765 0.8733 0.6857 0.6881 0.6857 0.6854
0.7898 6.0 2118 0.8526 0.6913 0.6911 0.6913 0.6888
0.7074 7.0 2471 0.8408 0.6959 0.6971 0.6959 0.6953
0.7273 8.0 2824 0.8361 0.6980 0.6971 0.6980 0.6949
0.6982 9.0 3177 0.8297 0.6998 0.7022 0.6998 0.6999
0.6994 10.0 3530 0.8287 0.6998 0.7002 0.6998 0.6991

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results