Piro17's picture
update model card README.md
128c5d8
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: hq_fer2013notestaugM
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6998319625011055
          - name: Precision
            type: precision
            value: 0.7022095243425648
          - name: Recall
            type: recall
            value: 0.6998319625011055
          - name: F1
            type: f1
            value: 0.6999146124635052

hq_fer2013notestaugM

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8297
  • Accuracy: 0.6998
  • Precision: 0.7022
  • Recall: 0.6998
  • F1: 0.6999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 17
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.2858 1.0 353 1.2814 0.5545 0.5432 0.5545 0.5122
1.0247 2.0 706 1.0343 0.6288 0.6235 0.6288 0.6136
0.9403 3.0 1059 0.9500 0.6607 0.6592 0.6607 0.6522
0.8501 4.0 1412 0.8971 0.6803 0.6761 0.6803 0.6760
0.8148 5.0 1765 0.8733 0.6857 0.6881 0.6857 0.6854
0.7898 6.0 2118 0.8526 0.6913 0.6911 0.6913 0.6888
0.7074 7.0 2471 0.8408 0.6959 0.6971 0.6959 0.6953
0.7273 8.0 2824 0.8361 0.6980 0.6971 0.6980 0.6949
0.6982 9.0 3177 0.8297 0.6998 0.7022 0.6998 0.6999
0.6994 10.0 3530 0.8287 0.6998 0.7002 0.6998 0.6991

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2