Edit model card

Whisper Small EN - Pradyum Agarwal 4

This model is a fine-tuned version of openai/whisper-small on the Audio Medical Combined Dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0009
  • Wer: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 10
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.749 0.5556 25 0.8143 17.8552
0.6169 1.1111 50 0.6652 14.0483
0.4324 1.6667 75 0.3086 12.4397
0.1351 2.2222 100 0.1857 8.6863
0.1414 2.7778 125 0.1251 5.3083
0.0638 3.3333 150 0.0827 2.7346
0.053 3.8889 175 0.0494 1.7694
0.0303 4.4444 200 0.0283 0.9115
0.0253 5.0 225 0.0155 0.5362
0.012 5.5556 250 0.0111 0.4826
0.0119 6.1111 275 0.0051 0.1072
0.0028 6.6667 300 0.0035 0.0
0.0066 7.2222 325 0.0030 0.0536
0.0045 7.7778 350 0.0026 0.0536
0.0015 8.3333 375 0.0020 0.0536
0.0013 8.8889 400 0.0018 0.0
0.0015 9.4444 425 0.0015 0.0
0.0016 10.0 450 0.0011 0.0
0.0008 10.5556 475 0.0010 0.0
0.0007 11.1111 500 0.0009 0.0

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for PradyumSomebody/whisper-small-hi-custom5

Finetuned
(1885)
this model

Dataset used to train PradyumSomebody/whisper-small-hi-custom5

Evaluation results