metadata
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- PradyumSomebody/Audio_Medical4
metrics:
- wer
model-index:
- name: Whisper Small EN - Pradyum Agarwal 4
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Audio Medical Combined Dataset
type: PradyumSomebody/Audio_Medical4
args: 'config: combined, split: train'
metrics:
- name: Wer
type: wer
value: 0
Whisper Small EN - Pradyum Agarwal 4
This model is a fine-tuned version of openai/whisper-small on the Audio Medical Combined Dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.0009
- Wer: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 10
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.749 | 0.5556 | 25 | 0.8143 | 17.8552 |
0.6169 | 1.1111 | 50 | 0.6652 | 14.0483 |
0.4324 | 1.6667 | 75 | 0.3086 | 12.4397 |
0.1351 | 2.2222 | 100 | 0.1857 | 8.6863 |
0.1414 | 2.7778 | 125 | 0.1251 | 5.3083 |
0.0638 | 3.3333 | 150 | 0.0827 | 2.7346 |
0.053 | 3.8889 | 175 | 0.0494 | 1.7694 |
0.0303 | 4.4444 | 200 | 0.0283 | 0.9115 |
0.0253 | 5.0 | 225 | 0.0155 | 0.5362 |
0.012 | 5.5556 | 250 | 0.0111 | 0.4826 |
0.0119 | 6.1111 | 275 | 0.0051 | 0.1072 |
0.0028 | 6.6667 | 300 | 0.0035 | 0.0 |
0.0066 | 7.2222 | 325 | 0.0030 | 0.0536 |
0.0045 | 7.7778 | 350 | 0.0026 | 0.0536 |
0.0015 | 8.3333 | 375 | 0.0020 | 0.0536 |
0.0013 | 8.8889 | 400 | 0.0018 | 0.0 |
0.0015 | 9.4444 | 425 | 0.0015 | 0.0 |
0.0016 | 10.0 | 450 | 0.0011 | 0.0 |
0.0008 | 10.5556 | 475 | 0.0010 | 0.0 |
0.0007 | 11.1111 | 500 | 0.0009 | 0.0 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1