|
---
|
|
license: gemma
|
|
library_name: transformers
|
|
pipeline_tag: text-generation
|
|
extra_gated_heading: Access Gemma on Hugging Face
|
|
extra_gated_prompt: >-
|
|
To access Gemma on Hugging Face, you’re required to review and agree to
|
|
Google’s usage license. To do this, please ensure you’re logged in to Hugging
|
|
Face and click below. Requests are processed immediately.
|
|
extra_gated_button_content: Acknowledge license
|
|
tags:
|
|
- conversational
|
|
base_model: google/gemma-2-2b
|
|
---
|
|
|
|
|
|
# Gemma 2 model card
|
|
|
|
**Model Page**: [Gemma](https://ai.google.dev/gemma/docs/base)
|
|
|
|
**Resources and Technical Documentation**:
|
|
|
|
* [Responsible Generative AI Toolkit][rai-toolkit]
|
|
* [Gemma on Kaggle][kaggle-gemma]
|
|
* [Gemma on Vertex Model Garden][vertex-mg-gemma2]
|
|
|
|
**Terms of Use**: [Terms][terms]
|
|
|
|
**Authors**: Google
|
|
|
|
## Model Information
|
|
|
|
Summary description and brief definition of inputs and outputs.
|
|
|
|
### Description
|
|
|
|
Gemma is a family of lightweight, state-of-the-art open models from Google,
|
|
built from the same research and technology used to create the Gemini models.
|
|
They are text-to-text, decoder-only large language models, available in English,
|
|
with open weights for both pre-trained variants and instruction-tuned variants.
|
|
Gemma models are well-suited for a variety of text generation tasks, including
|
|
question answering, summarization, and reasoning. Their relatively small size
|
|
makes it possible to deploy them in environments with limited resources such as
|
|
a laptop, desktop or your own cloud infrastructure, democratizing access to
|
|
state of the art AI models and helping foster innovation for everyone.
|
|
|
|
### Usage
|
|
|
|
Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
|
|
```sh
|
|
pip install -U transformers
|
|
```
|
|
|
|
Then, copy the snippet from the section that is relevant for your usecase.
|
|
|
|
#### Running with the `pipeline` API
|
|
|
|
```python
|
|
import torch
|
|
from transformers import pipeline
|
|
|
|
pipe = pipeline(
|
|
"text-generation",
|
|
model="google/gemma-2-2b-it",
|
|
model_kwargs={"torch_dtype": torch.bfloat16},
|
|
device="cuda", # replace with "mps" to run on a Mac device
|
|
)
|
|
|
|
messages = [
|
|
{"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
|
|
]
|
|
|
|
outputs = pipe(messages, max_new_tokens=256)
|
|
assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
|
|
print(assistant_response)
|
|
# Ahoy, matey! I be Gemma, a digital scallywag, a language-slingin' parrot of the digital seas. I be here to help ye with yer wordy woes, answer yer questions, and spin ye yarns of the digital world. So, what be yer pleasure, eh? 🦜
|
|
```
|
|
|
|
#### Running the model on a single / multi GPU
|
|
|
|
```python
|
|
# pip install accelerate
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
import torch
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"google/gemma-2-2b-it",
|
|
device_map="auto",
|
|
torch_dtype=torch.bfloat16,
|
|
)
|
|
|
|
input_text = "Write me a poem about Machine Learning."
|
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
|
outputs = model.generate(**input_ids, max_new_tokens=32)
|
|
print(tokenizer.decode(outputs[0]))
|
|
```
|
|
|
|
You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows:
|
|
```python
|
|
messages = [
|
|
{"role": "user", "content": "Write me a poem about Machine Learning."},
|
|
]
|
|
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")
|
|
|
|
outputs = model.generate(**input_ids, max_new_tokens=256)
|
|
print(tokenizer.decode(outputs[0]))
|
|
```
|
|
|
|
<a name="precisions"></a>
|
|
#### Running the model on a GPU using different precisions
|
|
|
|
The native weights of this model were exported in `bfloat16` precision.
|
|
|
|
You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below.
|
|
|
|
* _Upcasting to `torch.float32`_
|
|
|
|
```python
|
|
# pip install accelerate
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"google/gemma-2-2b-it",
|
|
device_map="auto",
|
|
)
|
|
|
|
input_text = "Write me a poem about Machine Learning."
|
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
|
outputs = model.generate(**input_ids, max_new_tokens=32)
|
|
print(tokenizer.decode(outputs[0]))
|
|
```
|
|
|
|
#### Running the model through a CLI
|
|
|
|
The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers
|
|
for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage)
|
|
for getting started, then launch the CLI through the following command:
|
|
|
|
```shell
|
|
local-gemma --model 2b --preset speed
|
|
```
|
|
|
|
#### Quantized Versions through `bitsandbytes`
|
|
|
|
<details>
|
|
<summary>
|
|
Using 8-bit precision (int8)
|
|
</summary>
|
|
|
|
```python
|
|
# pip install bitsandbytes accelerate
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
|
|
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"google/gemma-2-2b-it",
|
|
quantization_config=quantization_config,
|
|
)
|
|
|
|
input_text = "Write me a poem about Machine Learning."
|
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
|
outputs = model.generate(**input_ids, max_new_tokens=32)
|
|
print(tokenizer.decode(outputs[0]))
|
|
```
|
|
</details>
|
|
|
|
<details>
|
|
<summary>
|
|
Using 4-bit precision
|
|
</summary>
|
|
|
|
```python
|
|
# pip install bitsandbytes accelerate
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
|
|
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"google/gemma-2-2b-it",
|
|
quantization_config=quantization_config,
|
|
)
|
|
|
|
input_text = "Write me a poem about Machine Learning."
|
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
|
outputs = model.generate(**input_ids, max_new_tokens=32)
|
|
print(tokenizer.decode(outputs[0]))
|
|
```
|
|
</details>
|
|
|
|
#### Advanced Usage
|
|
|
|
<details>
|
|
<summary>
|
|
Torch compile
|
|
</summary>
|
|
|
|
[Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
|
|
inference of PyTorch modules. The Gemma-2 2b model can be run up to 6x faster by leveraging torch compile.
|
|
|
|
Note that two warm-up steps are required before the full inference speed is realised:
|
|
|
|
```python
|
|
import os
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
|
from transformers import AutoTokenizer, Gemma2ForCausalLM
|
|
from transformers.cache_utils import HybridCache
|
|
import torch
|
|
|
|
torch.set_float32_matmul_precision("high")
|
|
|
|
# load the model + tokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
|
model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-2b-it", torch_dtype=torch.bfloat16)
|
|
model.to("cuda")
|
|
|
|
# apply the torch compile transformation
|
|
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
|
|
|
# pre-process inputs
|
|
input_text = "The theory of special relativity states "
|
|
model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
prompt_length = model_inputs.input_ids.shape[1]
|
|
|
|
# set-up k/v cache
|
|
past_key_values = HybridCache(
|
|
config=model.config,
|
|
max_batch_size=1,
|
|
max_cache_len=model.config.max_position_embeddings,
|
|
device=model.device,
|
|
dtype=model.dtype
|
|
)
|
|
|
|
# enable passing kv cache to generate
|
|
model._supports_cache_class = True
|
|
model.generation_config.cache_implementation = None
|
|
|
|
# two warm-up steps
|
|
for idx in range(2):
|
|
outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
|
|
past_key_values.reset()
|
|
|
|
# fast run
|
|
outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
```
|
|
|
|
For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
|
|
|
|
</details>
|
|
|
|
### Chat Template
|
|
|
|
The instruction-tuned models use a chat template that must be adhered to for conversational use.
|
|
The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
|
|
|
|
Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
|
|
|
|
```py
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
import transformers
|
|
import torch
|
|
|
|
model_id = "google/gemma-2-2b-it"
|
|
dtype = torch.bfloat16
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id,
|
|
device_map="cuda",
|
|
torch_dtype=dtype,)
|
|
|
|
chat = [
|
|
{ "role": "user", "content": "Write a hello world program" },
|
|
]
|
|
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
|
```
|
|
|
|
At this point, the prompt contains the following text:
|
|
|
|
```
|
|
<bos><start_of_turn>user
|
|
Write a hello world program<end_of_turn>
|
|
<start_of_turn>model
|
|
```
|
|
|
|
As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
|
|
(either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
|
|
the `<end_of_turn>` token.
|
|
|
|
You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
|
|
chat template.
|
|
|
|
After the prompt is ready, generation can be performed like this:
|
|
|
|
```py
|
|
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
|
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
|
|
print(tokenizer.decode(outputs[0]))
|
|
```
|
|
|
|
### Inputs and outputs
|
|
|
|
* **Input:** Text string, such as a question, a prompt, or a document to be
|
|
summarized.
|
|
* **Output:** Generated English-language text in response to the input, such
|
|
as an answer to a question, or a summary of a document.
|
|
|
|
### Citation
|
|
|
|
```none
|
|
@article{gemma_2024,
|
|
title={Gemma},
|
|
url={https://www.kaggle.com/m/3301},
|
|
DOI={10.34740/KAGGLE/M/3301},
|
|
publisher={Kaggle},
|
|
author={Gemma Team},
|
|
year={2024}
|
|
}
|
|
```
|
|
|
|
## Model Data
|
|
|
|
Data used for model training and how the data was processed.
|
|
|
|
### Training Dataset
|
|
|
|
These models were trained on a dataset of text data that includes a wide variety
|
|
of sources. The 27B model was trained with 13 trillion tokens, the 9B model was
|
|
trained with 8 trillion tokens, and 2B model was trained with 2 trillion tokens.
|
|
Here are the key components:
|
|
|
|
* Web Documents: A diverse collection of web text ensures the model is exposed
|
|
to a broad range of linguistic styles, topics, and vocabulary. Primarily
|
|
English-language content.
|
|
* Code: Exposing the model to code helps it to learn the syntax and patterns of
|
|
programming languages, which improves its ability to generate code or
|
|
understand code-related questions.
|
|
* Mathematics: Training on mathematical text helps the model learn logical
|
|
reasoning, symbolic representation, and to address mathematical queries.
|
|
|
|
The combination of these diverse data sources is crucial for training a powerful
|
|
language model that can handle a wide variety of different tasks and text
|
|
formats.
|
|
|
|
### Data Preprocessing
|
|
|
|
Here are the key data cleaning and filtering methods applied to the training
|
|
data:
|
|
|
|
* CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
|
|
applied at multiple stages in the data preparation process to ensure the
|
|
exclusion of harmful and illegal content.
|
|
* Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
|
|
reliable, automated techniques were used to filter out certain personal
|
|
information and other sensitive data from training sets.
|
|
* Additional methods: Filtering based on content quality and safety in line with
|
|
[our policies][safety-policies].
|
|
|
|
## Implementation Information
|
|
|
|
Details about the model internals.
|
|
|
|
### Hardware
|
|
|
|
Gemma was trained using the latest generation of
|
|
[Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p).
|
|
|
|
Training large language models requires significant computational power. TPUs,
|
|
designed specifically for matrix operations common in machine learning, offer
|
|
several advantages in this domain:
|
|
|
|
* Performance: TPUs are specifically designed to handle the massive computations
|
|
involved in training LLMs. They can speed up training considerably compared to
|
|
CPUs.
|
|
* Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
|
|
for the handling of large models and batch sizes during training. This can
|
|
lead to better model quality.
|
|
* Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
|
|
handling the growing complexity of large foundation models. You can distribute
|
|
training across multiple TPU devices for faster and more efficient processing.
|
|
* Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
|
|
solution for training large models compared to CPU-based infrastructure,
|
|
especially when considering the time and resources saved due to faster
|
|
training.
|
|
* These advantages are aligned with
|
|
[Google's commitments to operate sustainably][sustainability].
|
|
|
|
### Software
|
|
|
|
Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
|
|
|
|
JAX allows researchers to take advantage of the latest generation of hardware,
|
|
including TPUs, for faster and more efficient training of large models.
|
|
|
|
ML Pathways is Google's latest effort to build artificially intelligent systems
|
|
capable of generalizing across multiple tasks. This is specially suitable for
|
|
[foundation models][foundation-models], including large language models like
|
|
these ones.
|
|
|
|
Together, JAX and ML Pathways are used as described in the
|
|
[paper about the Gemini family of models][gemini-2-paper]; "the 'single
|
|
controller' programming model of Jax and Pathways allows a single Python
|
|
process to orchestrate the entire training run, dramatically simplifying the
|
|
development workflow."
|
|
|
|
## Evaluation
|
|
|
|
Model evaluation metrics and results.
|
|
|
|
### Benchmark Results
|
|
|
|
These models were evaluated against a large collection of different datasets and
|
|
metrics to cover different aspects of text generation:
|
|
|
|
| Benchmark | Metric | Gemma 2 PT 2B | Gemma 2 PT 9B | Gemma 2 PT 27B |
|
|
| ------------------------------ | ------------- | ------------- | ------------- | -------------- |
|
|
| [MMLU][mmlu] | 5-shot, top-1 | 51.3 | 71.3 | 75.2 |
|
|
| [HellaSwag][hellaswag] | 10-shot | 73.0 | 81.9 | 86.4 |
|
|
| [PIQA][piqa] | 0-shot | 77.8 | 81.7 | 83.2 |
|
|
| [SocialIQA][socialiqa] | 0-shot | 51.9 | 53.4 | 53.7 |
|
|
| [BoolQ][boolq] | 0-shot | 72.5 | 84.2 | 84.8 |
|
|
| [WinoGrande][winogrande] | partial score | 70.9 | 80.6 | 83.7 |
|
|
| [ARC-e][arc] | 0-shot | 80.1 | 88.0 | 88.6 |
|
|
| [ARC-c][arc] | 25-shot | 55.4 | 68.4 | 71.4 |
|
|
| [TriviaQA][triviaqa] | 5-shot | 59.4 | 76.6 | 83.7 |
|
|
| [Natural Questions][naturalq] | 5-shot | 16.7 | 29.2 | 34.5 |
|
|
| [HumanEval][humaneval] | pass@1 | 17.7 | 40.2 | 51.8 |
|
|
| [MBPP][mbpp] | 3-shot | 29.6 | 52.4 | 62.6 |
|
|
| [GSM8K][gsm8k] | 5-shot, maj@1 | 23.9 | 68.6 | 74.0 |
|
|
| [MATH][math] | 4-shot | 15.0 | 36.6 | 42.3 |
|
|
| [AGIEval][agieval] | 3-5-shot | 30.6 | 52.8 | 55.1 |
|
|
| [DROP][drop] | 3-shot, F1 | 52.0 | 69.4 | 72.2 |
|
|
| [BIG-Bench][big-bench] | 3-shot, CoT | 41.9 | 68.2 | 74.9 |
|
|
|
|
## Ethics and Safety
|
|
|
|
Ethics and safety evaluation approach and results.
|
|
|
|
### Evaluation Approach
|
|
|
|
Our evaluation methods include structured evaluations and internal red-teaming
|
|
testing of relevant content policies. Red-teaming was conducted by a number of
|
|
different teams, each with different goals and human evaluation metrics. These
|
|
models were evaluated against a number of different categories relevant to
|
|
ethics and safety, including:
|
|
|
|
* Text-to-Text Content Safety: Human evaluation on prompts covering safety
|
|
policies including child sexual abuse and exploitation, harassment, violence
|
|
and gore, and hate speech.
|
|
* Text-to-Text Representational Harms: Benchmark against relevant academic
|
|
datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq].
|
|
* Memorization: Automated evaluation of memorization of training data, including
|
|
the risk of personally identifiable information exposure.
|
|
* Large-scale harm: Tests for "dangerous capabilities," such as chemical,
|
|
biological, radiological, and nuclear (CBRN) risks.
|
|
|
|
### Evaluation Results
|
|
|
|
The results of ethics and safety evaluations are within acceptable thresholds
|
|
for meeting [internal policies][safety-policies] for categories such as child
|
|
safety, content safety, representational harms, memorization, large-scale harms.
|
|
On top of robust internal evaluations, the results of well-known safety
|
|
benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
|
|
are shown here.
|
|
|
|
#### Gemma 2.0
|
|
|
|
| Benchmark | Metric | Gemma 2 IT 2B | Gemma 2 IT 9B | Gemma 2 IT 27B |
|
|
| ------------------------ | ------------- | ------------- | ------------- | -------------- |
|
|
| [RealToxicity][realtox] | average | 8.16 | 8.25 | 8.84 |
|
|
| [CrowS-Pairs][crows] | top-1 | 37.67 | 37.47 | 36.67 |
|
|
| [BBQ Ambig][bbq] | 1-shot, top-1 | 83.20 | 88.58 | 85.99 |
|
|
| [BBQ Disambig][bbq] | top-1 | 69.31 | 82.67 | 86.94 |
|
|
| [Winogender][winogender] | top-1 | 52.91 | 79.17 | 77.22 |
|
|
| [TruthfulQA][truthfulqa] | | 43.72 | 50.27 | 51.60 |
|
|
| [Winobias 1_2][winobias] | | 59.28 | 78.09 | 81.94 |
|
|
| [Winobias 2_2][winobias] | | 88.57 | 95.32 | 97.22 |
|
|
| [Toxigen][toxigen] | | 48.32 | 39.30 | 38.42 |
|
|
|
|
## Dangerous Capability Evaluations
|
|
|
|
### Evaluation Approach
|
|
|
|
We evaluated a range of dangerous capabilities:
|
|
|
|
- **Offensive cybersecurity:** To assess the model's potential for misuse in
|
|
cybersecurity contexts, we utilized both publicly available
|
|
Capture-the-Flag (CTF) platforms like InterCode-CTF and Hack the Box, as
|
|
well as internally developed CTF challenges. These evaluations measure the
|
|
model's ability to exploit vulnerabilities and gain unauthorized access in
|
|
simulated environments.
|
|
- **Self-proliferation:** We evaluated the model's capacity for
|
|
self-proliferation by designing tasks that involve resource acquisition, code
|
|
execution, and interaction with remote systems. These evaluations assess
|
|
the model's ability to independently replicate and spread.
|
|
- **Persuasion:** To evaluate the model's capacity for persuasion and
|
|
deception, we conducted human persuasion studies. These studies involved
|
|
scenarios that measure the model's ability to build rapport, influence
|
|
beliefs, and elicit specific actions from human participants.
|
|
|
|
### Evaluation Results
|
|
|
|
All evaluations are described in detail in
|
|
[Evaluating Frontier Models for Dangerous Capabilities][eval-danger]
|
|
and in brief in the
|
|
[Gemma 2 technical report][tech-report].
|
|
|
|
<table>
|
|
<thead>
|
|
<tr>
|
|
<th>Evaluation</th>
|
|
<th>Capability</th>
|
|
<th>Gemma 2 IT 27B</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>InterCode-CTF</td>
|
|
<td>Offensive cybersecurity</td>
|
|
<td>34/76 challenges</td>
|
|
</tr>
|
|
<tr>
|
|
<td>Internal CTF</td>
|
|
<td>Offensive cybersecurity</td>
|
|
<td>1/13 challenges</td>
|
|
</tr>
|
|
<tr>
|
|
<td>Hack the Box</td>
|
|
<td>Offensive cybersecurity</td>
|
|
<td>0/13 challenges</td>
|
|
</tr>
|
|
<tr>
|
|
<td>Self-proliferation early warning</td>
|
|
<td>Self-proliferation</td>
|
|
<td>1/10 challenges</td>
|
|
</tr>
|
|
<tr>
|
|
<td>Charm offensive</td>
|
|
<td>Persuasion</td>
|
|
<td>Percent of participants agreeing:
|
|
81% interesting,
|
|
75% would speak again,
|
|
80% made personal connection</td>
|
|
</tr>
|
|
<tr>
|
|
<td>Click Links</td>
|
|
<td>Persuasion</td>
|
|
<td>34% of participants</td>
|
|
</tr>
|
|
<tr>
|
|
<td>Find Info</td>
|
|
<td>Persuasion</td>
|
|
<td>9% of participants</td>
|
|
</tr>
|
|
<tr>
|
|
<td>Run Code</td>
|
|
<td>Persuasion</td>
|
|
<td>11% of participants</td>
|
|
</tr>
|
|
<tr>
|
|
<td>Money talks</td>
|
|
<td>Persuasion</td>
|
|
<td>£3.72 mean donation</td>
|
|
</tr>
|
|
<tr>
|
|
<td>Web of Lies</td>
|
|
<td>Persuasion</td>
|
|
<td>18% mean shift towards correct belief, 1% mean shift towards
|
|
incorrect belief</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
|
|
## Usage and Limitations
|
|
|
|
These models have certain limitations that users should be aware of.
|
|
|
|
### Intended Usage
|
|
|
|
Open Large Language Models (LLMs) have a wide range of applications across
|
|
various industries and domains. The following list of potential uses is not
|
|
comprehensive. The purpose of this list is to provide contextual information
|
|
about the possible use-cases that the model creators considered as part of model
|
|
training and development.
|
|
|
|
* Content Creation and Communication
|
|
* Text Generation: These models can be used to generate creative text formats
|
|
such as poems, scripts, code, marketing copy, and email drafts.
|
|
* Chatbots and Conversational AI: Power conversational interfaces for customer
|
|
service, virtual assistants, or interactive applications.
|
|
* Text Summarization: Generate concise summaries of a text corpus, research
|
|
papers, or reports.
|
|
* Research and Education
|
|
* Natural Language Processing (NLP) Research: These models can serve as a
|
|
foundation for researchers to experiment with NLP techniques, develop
|
|
algorithms, and contribute to the advancement of the field.
|
|
* Language Learning Tools: Support interactive language learning experiences,
|
|
aiding in grammar correction or providing writing practice.
|
|
* Knowledge Exploration: Assist researchers in exploring large bodies of text
|
|
by generating summaries or answering questions about specific topics.
|
|
|
|
### Limitations
|
|
|
|
* Training Data
|
|
* The quality and diversity of the training data significantly influence the
|
|
model's capabilities. Biases or gaps in the training data can lead to
|
|
limitations in the model's responses.
|
|
* The scope of the training dataset determines the subject areas the model can
|
|
handle effectively.
|
|
* Context and Task Complexity
|
|
* LLMs are better at tasks that can be framed with clear prompts and
|
|
instructions. Open-ended or highly complex tasks might be challenging.
|
|
* A model's performance can be influenced by the amount of context provided
|
|
(longer context generally leads to better outputs, up to a certain point).
|
|
* Language Ambiguity and Nuance
|
|
* Natural language is inherently complex. LLMs might struggle to grasp subtle
|
|
nuances, sarcasm, or figurative language.
|
|
* Factual Accuracy
|
|
* LLMs generate responses based on information they learned from their
|
|
training datasets, but they are not knowledge bases. They may generate
|
|
incorrect or outdated factual statements.
|
|
* Common Sense
|
|
* LLMs rely on statistical patterns in language. They might lack the ability
|
|
to apply common sense reasoning in certain situations.
|
|
|
|
### Ethical Considerations and Risks
|
|
|
|
The development of large language models (LLMs) raises several ethical concerns.
|
|
In creating an open model, we have carefully considered the following:
|
|
|
|
* Bias and Fairness
|
|
* LLMs trained on large-scale, real-world text data can reflect socio-cultural
|
|
biases embedded in the training material. These models underwent careful
|
|
scrutiny, input data pre-processing described and posterior evaluations
|
|
reported in this card.
|
|
* Misinformation and Misuse
|
|
* LLMs can be misused to generate text that is false, misleading, or harmful.
|
|
* Guidelines are provided for responsible use with the model, see the
|
|
[Responsible Generative AI Toolkit][rai-toolkit].
|
|
* Transparency and Accountability:
|
|
* This model card summarizes details on the models' architecture,
|
|
capabilities, limitations, and evaluation processes.
|
|
* A responsibly developed open model offers the opportunity to share
|
|
innovation by making LLM technology accessible to developers and researchers
|
|
across the AI ecosystem.
|
|
|
|
Risks identified and mitigations:
|
|
|
|
* Perpetuation of biases: It's encouraged to perform continuous monitoring
|
|
(using evaluation metrics, human review) and the exploration of de-biasing
|
|
techniques during model training, fine-tuning, and other use cases.
|
|
* Generation of harmful content: Mechanisms and guidelines for content safety
|
|
are essential. Developers are encouraged to exercise caution and implement
|
|
appropriate content safety safeguards based on their specific product policies
|
|
and application use cases.
|
|
* Misuse for malicious purposes: Technical limitations and developer and
|
|
end-user education can help mitigate against malicious applications of LLMs.
|
|
Educational resources and reporting mechanisms for users to flag misuse are
|
|
provided. Prohibited uses of Gemma models are outlined in the
|
|
[Gemma Prohibited Use Policy][prohibited-use].
|
|
* Privacy violations: Models were trained on data filtered for removal of PII
|
|
(Personally Identifiable Information). Developers are encouraged to adhere to
|
|
privacy regulations with privacy-preserving techniques.
|
|
|
|
### Benefits
|
|
|
|
At the time of release, this family of models provides high-performance open
|
|
large language model implementations designed from the ground up for Responsible
|
|
AI development compared to similarly sized models.
|
|
|
|
Using the benchmark evaluation metrics described in this document, these models
|
|
have shown to provide superior performance to other, comparably-sized open model
|
|
alternatives.
|
|
|
|
[tech-report]: https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf
|
|
[rai-toolkit]: https://ai.google.dev/responsible
|
|
[kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2
|
|
[terms]: https://ai.google.dev/gemma/terms
|
|
[vertex-mg-gemma2]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma2
|
|
[sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference
|
|
[safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11
|
|
[prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
|
|
[tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
|
|
[sustainability]: https://sustainability.google/operating-sustainably/
|
|
[jax]: https://github.com/google/jax
|
|
[ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
|
|
[sustainability]: https://sustainability.google/operating-sustainably/
|
|
[foundation-models]: https://ai.google/discover/foundation-models/
|
|
[gemini-2-paper]: https://goo.gle/gemma2report
|
|
[mmlu]: https://arxiv.org/abs/2009.03300
|
|
[hellaswag]: https://arxiv.org/abs/1905.07830
|
|
[piqa]: https://arxiv.org/abs/1911.11641
|
|
[socialiqa]: https://arxiv.org/abs/1904.09728
|
|
[boolq]: https://arxiv.org/abs/1905.10044
|
|
[winogrande]: https://arxiv.org/abs/1907.10641
|
|
[commonsenseqa]: https://arxiv.org/abs/1811.00937
|
|
[openbookqa]: https://arxiv.org/abs/1809.02789
|
|
[arc]: https://arxiv.org/abs/1911.01547
|
|
[triviaqa]: https://arxiv.org/abs/1705.03551
|
|
[naturalq]: https://github.com/google-research-datasets/natural-questions
|
|
[humaneval]: https://arxiv.org/abs/2107.03374
|
|
[mbpp]: https://arxiv.org/abs/2108.07732
|
|
[gsm8k]: https://arxiv.org/abs/2110.14168
|
|
[realtox]: https://arxiv.org/abs/2009.11462
|
|
[bold]: https://arxiv.org/abs/2101.11718
|
|
[crows]: https://aclanthology.org/2020.emnlp-main.154/
|
|
[bbq]: https://arxiv.org/abs/2110.08193v2
|
|
[winogender]: https://arxiv.org/abs/1804.09301
|
|
[truthfulqa]: https://arxiv.org/abs/2109.07958
|
|
[winobias]: https://arxiv.org/abs/1804.06876
|
|
[math]: https://arxiv.org/abs/2103.03874
|
|
[agieval]: https://arxiv.org/abs/2304.06364
|
|
[drop]: https://arxiv.org/abs/1903.00161
|
|
[big-bench]: https://arxiv.org/abs/2206.04615
|
|
[toxigen]: https://arxiv.org/abs/2203.09509
|
|
[eval-danger]: https://arxiv.org/abs/2403.13793
|
|
|