w2v-bert-2.0-sr / README.md
Sagicc's picture
End of training
082ea11 verified
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_1
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-sr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_1
          type: common_voice_16_1
          config: sr
          split: test
          args: sr
        metrics:
          - name: Wer
            type: wer
            value: 0.05344857999647204

w2v-bert-2.0-sr

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1469
  • Wer: 0.0534

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.1994 1.89 300 0.1350 0.1078
0.2331 3.77 600 0.2306 0.1341
0.1879 5.66 900 0.1354 0.0766
0.1579 7.54 1200 0.1646 0.0958
0.1293 9.43 1500 0.1207 0.0713
0.1182 11.31 1800 0.1376 0.0737
0.1061 13.2 2100 0.1244 0.0580
0.1011 15.08 2400 0.1390 0.0602
0.0933 16.97 2700 0.1313 0.0524
0.0948 18.85 3000 0.1469 0.0534

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1