|
--- |
|
license: mit |
|
base_model: facebook/w2v-bert-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_16_1 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: w2v-bert-2.0-sr |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_16_1 |
|
type: common_voice_16_1 |
|
config: sr |
|
split: test |
|
args: sr |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.05344857999647204 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# w2v-bert-2.0-sr |
|
|
|
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_1 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1469 |
|
- Wer: 0.0534 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 2.1994 | 1.89 | 300 | 0.1350 | 0.1078 | |
|
| 0.2331 | 3.77 | 600 | 0.2306 | 0.1341 | |
|
| 0.1879 | 5.66 | 900 | 0.1354 | 0.0766 | |
|
| 0.1579 | 7.54 | 1200 | 0.1646 | 0.0958 | |
|
| 0.1293 | 9.43 | 1500 | 0.1207 | 0.0713 | |
|
| 0.1182 | 11.31 | 1800 | 0.1376 | 0.0737 | |
|
| 0.1061 | 13.2 | 2100 | 0.1244 | 0.0580 | |
|
| 0.1011 | 15.08 | 2400 | 0.1390 | 0.0602 | |
|
| 0.0933 | 16.97 | 2700 | 0.1313 | 0.0524 | |
|
| 0.0948 | 18.85 | 3000 | 0.1469 | 0.0534 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|