Sandiago21's picture
update model card README.md
8c791ca
|
raw
history blame
2.6 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results: []

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7031
  • Accuracy: 0.82

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2612 1.0 57 2.2511 0.26
2.1275 2.0 114 2.0384 0.36
1.8071 3.0 171 1.7399 0.52
1.6381 4.0 228 1.5693 0.61
1.4188 5.0 285 1.3573 0.61
1.2974 6.0 342 1.2103 0.72
1.2146 7.0 399 1.1800 0.69
1.0725 8.0 456 1.0126 0.77
1.0492 9.0 513 0.9821 0.74
1.0529 10.0 570 0.9347 0.77
0.895 11.0 627 0.8520 0.79
0.7692 12.0 684 0.8451 0.8
0.6566 13.0 741 0.7763 0.82
0.5885 14.0 798 0.7852 0.8
0.619 15.0 855 0.7443 0.8
0.5572 16.0 912 0.7444 0.79
0.6493 17.0 969 0.7024 0.83
0.5499 18.0 1026 0.7137 0.81
0.5923 19.0 1083 0.7059 0.81
0.5556 20.0 1140 0.7031 0.82

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3