SharmilaAnanthasayanam's picture
End of training
0470da6 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-hi-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_0
          type: common_voice_16_0
          config: hi
          split: test
          args: hi
        metrics:
          - name: Wer
            type: wer
            value: 0.4948465637275874

wav2vec2-large-xls-r-300m-hi-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6983
  • Wer: 0.4948

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer
5.491 1.8059 400 1.3703 0.9679
0.6981 3.6117 800 0.7041 0.6607
0.3758 5.4176 1200 0.6709 0.6185
0.2736 7.2235 1600 0.7170 0.5925
0.2089 9.0293 2000 0.6445 0.5722
0.1686 10.8352 2400 0.7004 0.5770
0.1408 12.6411 2800 0.7097 0.5735
0.1227 14.4470 3200 0.6763 0.5533
0.1056 16.2528 3600 0.7245 0.5484
0.0923 18.0587 4000 0.7198 0.5480
0.083 19.8646 4400 0.6568 0.5251
0.0742 21.6704 4800 0.7183 0.5252
0.0647 23.4763 5200 0.7306 0.5141
0.0574 25.2822 5600 0.7236 0.5063
0.052 27.0880 6000 0.7234 0.4969
0.0478 28.8939 6400 0.6983 0.4948

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1