SharmilaAnanthasayanam's picture
End of training
0470da6 verified
---
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice_16_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-hi-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_16_0
type: common_voice_16_0
config: hi
split: test
args: hi
metrics:
- name: Wer
type: wer
value: 0.4948465637275874
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-hi-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_16_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6983
- Wer: 0.4948
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 5.491 | 1.8059 | 400 | 1.3703 | 0.9679 |
| 0.6981 | 3.6117 | 800 | 0.7041 | 0.6607 |
| 0.3758 | 5.4176 | 1200 | 0.6709 | 0.6185 |
| 0.2736 | 7.2235 | 1600 | 0.7170 | 0.5925 |
| 0.2089 | 9.0293 | 2000 | 0.6445 | 0.5722 |
| 0.1686 | 10.8352 | 2400 | 0.7004 | 0.5770 |
| 0.1408 | 12.6411 | 2800 | 0.7097 | 0.5735 |
| 0.1227 | 14.4470 | 3200 | 0.6763 | 0.5533 |
| 0.1056 | 16.2528 | 3600 | 0.7245 | 0.5484 |
| 0.0923 | 18.0587 | 4000 | 0.7198 | 0.5480 |
| 0.083 | 19.8646 | 4400 | 0.6568 | 0.5251 |
| 0.0742 | 21.6704 | 4800 | 0.7183 | 0.5252 |
| 0.0647 | 23.4763 | 5200 | 0.7306 | 0.5141 |
| 0.0574 | 25.2822 | 5600 | 0.7236 | 0.5063 |
| 0.052 | 27.0880 | 6000 | 0.7234 | 0.4969 |
| 0.0478 | 28.8939 | 6400 | 0.6983 | 0.4948 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1