VIT_Captioning

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0461
  • Rouge1: 0.4850
  • Rouge2: 0.2566
  • Rougel: 0.3589
  • Rougelsum: 0.3595

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1024
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.4042 1.0 1828 1.7451 0.4622 0.1906 0.3370 0.3422
1.5875 2.0 3656 1.5933 0.4599 0.2060 0.3451 0.3472
1.3882 3.0 5484 1.5322 0.4606 0.2082 0.3422 0.3442
1.2415 4.0 7312 1.5130 0.4687 0.2208 0.3458 0.3476
1.1113 5.0 9140 1.5186 0.4630 0.2146 0.3398 0.3402
0.9671 6.0 10968 1.5683 0.4720 0.2290 0.3517 0.3520
0.8528 7.0 12796 1.6352 0.4704 0.2281 0.3491 0.3496
0.7555 8.0 14624 1.7122 0.4725 0.2305 0.3477 0.3481
0.6567 9.0 16452 1.7814 0.4763 0.2389 0.3537 0.3543
0.5612 10.0 18280 1.8528 0.4777 0.2410 0.3515 0.3516
0.4953 11.0 20108 1.9072 0.4799 0.2487 0.3562 0.3565
0.4445 12.0 21936 1.9503 0.4829 0.2514 0.3571 0.3574
0.3976 13.0 23764 1.9928 0.4834 0.2543 0.3569 0.3573
0.3643 14.0 25592 2.0249 0.4820 0.2520 0.3575 0.3581
0.3263 15.0 27420 2.0461 0.4850 0.2566 0.3589 0.3595

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
15
Safetensors
Model size
239M params
Tensor type
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.