license: other
license_name: cogvideox
license_link: https://huggingface.co/THUDM/CogVideoX-2b/blob/main/LICENSE
language:
- en
tags:
- cogvideox
- video-generation
- thudm
- text-to-video
inference: false
CogVideoX-2B
π δΈζι θ―» | π€ Huggingface Space | π Github | π arxiv
Demo Show
Model Introduction
CogVideoX is an open-source version of the video generation model originating from QingYing. The table below displays the list of video generation models we currently offer, along with their foundational information.
Model Name | CogVideoX-2B (This Repository) | CogVideoX-5B |
---|---|---|
Model Description | Entry-level model, balancing compatibility. Low cost for running and secondary development. | Larger model with higher video generation quality and better visual effects. |
Inference Precision | FP16* (Recommended), BF16, FP32, FP8*, INT8, no support for INT4 | BF16 (Recommended), FP16, FP32, FP8*, INT8, no support for INT4 |
Single GPU VRAM Consumption | FP16: 18GB using SAT / 12.5GB* using diffusers INT8: 7.8GB* using diffusers with torchao |
BF16: 26GB using SAT / 20.7GB* using diffusers INT8: 11.4GB* using diffusers with torchao |
Multi-GPU Inference VRAM Consumption | FP16: 10GB* using diffusers | BF16: 15GB* using diffusers |
Inference Speed (Step = 50, FP/BF16) |
Single A100: ~90 seconds Single H100: ~45 seconds |
Single A100: ~180 seconds Single H100: ~90 seconds |
Fine-tuning Precision | FP16 | BF16 |
Fine-tuning VRAM Consumption (per GPU) | 47 GB (bs=1, LORA) 61 GB (bs=2, LORA) 62GB (bs=1, SFT) |
63 GB (bs=1, LORA) 80 GB (bs=2, LORA) 75GB (bs=1, SFT) |
Prompt Language | English* | |
Prompt Length Limit | 226 Tokens | |
Video Length | 6 Seconds | |
Frame Rate | 8 Frames per Second | |
Video Resolution | 720 x 480, no support for other resolutions (including fine-tuning) | |
Positional Encoding | 3d_sincos_pos_embed | 3d_rope_pos_embed |
Data Explanation
- When testing with the diffusers library, the
enable_model_cpu_offload()
option andpipe.vae.enable_tiling()
optimization were enabled. This solution has not been tested on devices other than NVIDIA A100 / H100. Typically, this solution is adaptable to all devices above the NVIDIA Ampere architecture. If the optimization is disabled, memory usage will increase significantly, with peak memory being about 3 times the table value. - The CogVideoX-2B model was trained using
FP16
precision, so it is recommended to useFP16
for inference. - For multi-GPU inference, the
enable_model_cpu_offload()
optimization needs to be disabled. - Using the INT8 model will lead to reduced inference speed. This is done to allow low-memory GPUs to perform inference while maintaining minimal video quality loss, though the inference speed will be significantly reduced.
- Inference speed tests also used the memory optimization mentioned above. Without memory optimization, inference speed increases by approximately 10%. Only the
diffusers
version of the model supports quantization. - The model only supports English input; other languages can be translated to English for refinement by large models.
Note
- Using SAT for inference and fine-tuning of SAT version models. Feel free to visit our GitHub for more information.
Quick Start π€
This model supports deployment using the huggingface diffusers library. You can deploy it by following these steps.
We recommend that you visit our GitHub and check out the relevant prompt optimizations and conversions to get a better experience.
- Install the required dependencies
# diffusers>=0.30.1
# transformers>=0.44.0
# accelerate>=0.33.0 (suggest install from source)
# imageio-ffmpeg>=0.5.1
pip install --upgrade transformers accelerate diffusers imageio-ffmpeg
- Run the code
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
Quantized Inference
PytorchAO and Optimum-quanto can be used to quantize the Text Encoder, Transformer and VAE modules to lower the memory requirement of CogVideoX. This makes it possible to run the model on free-tier T4 Colab or smaller VRAM GPUs as well! It is also worth noting that TorchAO quantization is fully compatible with torch.compile
, which allows for much faster inference speed.
# To get started, PytorchAO needs to be installed from the GitHub source and PyTorch Nightly.
# Source and nightly installation is only required until next release.
import torch
from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXPipeline
from diffusers.utils import export_to_video
+ from transformers import T5EncoderModel
+ from torchao.quantization import quantize_, int8_weight_only, int8_dynamic_activation_int8_weight
+ quantization = int8_weight_only
+ text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="text_encoder", torch_dtype=torch.bfloat16)
+ quantize_(text_encoder, quantization())
+ transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16)
+ quantize_(transformer, quantization())
+ vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-2b", subfolder="vae", torch_dtype=torch.bfloat16)
+ quantize_(vae, quantization())
# Create pipeline and run inference
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
+ text_encoder=text_encoder,
+ transformer=transformer,
+ vae=vae,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
Additionally, the models can be serialized and stored in a quantized datatype to save disk space when using PytorchAO. Find examples and benchmarks at these links:
Explore the Model
Welcome to our github, where you will find:
- More detailed technical details and code explanation.
- Optimization and conversion of prompt words.
- Reasoning and fine-tuning of SAT version models, and even pre-release.
- Project update log dynamics, more interactive opportunities.
- CogVideoX toolchain to help you better use the model.
- INT8 model inference code support.
Model License
The CogVideoX-2B model (including its corresponding Transformers module and VAE module) is released under the Apache 2.0 License.
The CogVideoX-5B model (Transformers module) is released under the CogVideoX LICENSE.
Citation
@article{yang2024cogvideox,
title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer},
author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others},
journal={arXiv preprint arXiv:2408.06072},
year={2024}
}