CogView3-Plus-3B
📄 Read in English | 🤗 Hugging Face Space | 🌐 Github | 📜 arxiv
📍 前往 清言 和 API平台 体验更大规模的商业版视频生成模型。
推理要求和模型介绍
该模型是 CogView3 的 DiT 版本图像生成模型,支持从 512 到 2048 范围内的图像生成。
- 分辨率: 长宽均需满足 512px - 2048px 之间,均需被32整除。
- 推理速度: 1s / step (在 A100 进行测试)
- 精度: BF16 / FP32 (不支持FP16,会出现溢出导致纯黑图片)
显存消耗
我们在A100设备上对几个常见分辨率的显存消耗进行了测试,batchsize=1, BF16
, 如下表所示:
分辨率 | enable_model_cpu_offload OFF | enable_model_cpu_offload ON |
---|---|---|
512 * 512 | 19GB | 11GB |
720 * 480 | 20GB | 11GB |
1024 * 1024 | 23GB | 11GB |
1280 * 720 | 24GB | 11GB |
2048 * 2048 | 25GB | 11GB |
快速开始
首先,确保从源代码安装diffusers
库。
pip install git+https://github.com/huggingface/diffusers.git
接着,运行以下代码:
from diffusers import CogView3PlusPipeline
import torch
pipe = CogView3PlusPipeline.from_pretrained("THUDM/CogView3-Plus-3B", torch_dtype=torch.float16).to("cuda")
# Open it for reduce GPU memory usage
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
prompt = "A vibrant cherry red sports car sits proudly under the gleaming sun, its polished exterior smooth and flawless, casting a mirror-like reflection. The car features a low, aerodynamic body, angular headlights that gaze forward like predatory eyes, and a set of black, high-gloss racing rims that contrast starkly with the red. A subtle hint of chrome embellishes the grille and exhaust, while the tinted windows suggest a luxurious and private interior. The scene conveys a sense of speed and elegance, the car appearing as if it's about to burst into a sprint along a coastal road, with the ocean's azure waves crashing in the background."
image = pipe(
prompt=prompt,
guidance_scale=7.0,
num_images_per_prompt=1,
num_inference_steps=50,
width=1024,
height=1024,
).images[0]
image.save("cogview3.png")
更多内容以及下载 SAT 原始权重,请前往我们的 github。
引用
🌟 如果您发现我们的工作有所帮助,欢迎引用我们的文章,留下宝贵的stars
@article{zheng2024cogview3,
title={Cogview3: Finer and faster text-to-image generation via relay diffusion},
author={Zheng, Wendi and Teng, Jiayan and Yang, Zhuoyi and Wang, Weihan and Chen, Jidong and Gu, Xiaotao and Dong, Yuxiao and Ding, Ming and Tang, Jie},
journal={arXiv preprint arXiv:2403.05121},
year={2024}
}
模型协议
该模型基于 Apache 2.0 License 协议发布。