English
art
Stable Diffusion
lyraSD / README.md
yibolu
update readme
b8c960d
|
raw
history blame
7.76 kB
metadata
license: creativeml-openrail-m
language:
  - en
tags:
  - art
  - Stable Diffusion

Model Card for lyraSD

We consider the Diffusers as the much more extendable framework for the SD ecosystem. Therefore, we have made a pivot to Diffusers, leading to a complete update of lyraSD.

lyraSD is currently the fastest Stable Diffusion model that can 100% align the outputs of Diffusers available, boasting an inference cost of only 0.36 seconds for a 512x512 image, accelerating the process up to 50% faster than the original version.

Among its main features are:

  • All Commonly used SD1.5 and SDXL pipelines
    • Text2Img
    • Img2Img
    • Inpainting
    • ControlNetText2Img
    • ControlNetImg2Img
    • IpAdapterText2Img
  • Fast ControlNet Hot Swap: Can hot swap a ControlNet model weights within 0.6s
  • Fast LoRA Hot Swap: Can hot swap a Lora within 0.14s
  • 100% likeness to diffusers output
  • Supported Devices: Any GPU with SM version >= 80. For example, Nvidia Nvidia Ampere architecture (A2, A10, A16, A30, A40, A100), RTX 4090, 3080 and etc.

Speed

test environment

  • Device: Nvidia A100 40G
  • Nvidia driver version: 525.105.17
  • Nvidia cuda version: 12.0
  • Percision:fp16
  • Steps: 20
  • Sampler: EulerA

SD1.5 Text2Img Performance

Alt text

SD1.5 ControlNet-Text2Img Performance

Alt text

SDXL Text2Img Performance

Alt text

SDXL ControlNet-Text2Img Performance

Alt text

SD Model Load Performance

Alt text

Model Sources

SD1.5

SDXL

SD1.5 Text2Img Uses

import torch
import time

from lyrasd_model import LyraSdTxt2ImgPipeline

# 存放模型文件的路径,应该包含一下结构(和diffusers一致):
#   1. clip 模型
#   2. 转换好的优化后的 unet 模型,放入其中的 unet_bins 文件夹
#   3. vae 模型
#   4. scheduler 配置

# LyraSD 的 C++ 编译动态链接库,其中包含 C++ CUDA 计算的细节
lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu11_sm80.so"
model_path = "./models/lyrasd_rev_animated"
lora_path = "./models/lyrasd_xiaorenshu_lora"

# 构建 Txt2Img 的 Pipeline
model = LyraSdTxt2ImgPipeline(model_path, lib_path)

# load lora
# lora model path, name,lora strength
model.load_lora_v2(lora_path, "xiaorenshu", 0.4)

# 准备应用的输入和超参数
prompt = "a cat, cute, cartoon, concise, traditional, chinese painting, Tang and Song Dynasties, masterpiece, 4k, 8k, UHD, best quality"
negative_prompt = "(((horrible))), (((scary))), (((naked))), (((large breasts))), high saturation, colorful, human:2, body:2, low quality, bad quality, lowres, out of frame, duplicate, watermark, signature, text, frames, cut, cropped, malformed limbs, extra limbs, (((missing arms))), (((missing legs)))"
height, width = 512, 512
steps = 30
guidance_scale = 7
generator = torch.Generator().manual_seed(123)
num_images = 1

start = time.perf_counter()
# 推理生成
images = model(prompt, height, width, steps,
        guidance_scale, negative_prompt, num_images,
        generator=generator)
print("image gen cost: ",time.perf_counter() - start)
# 存储生成的图片
for i, image in enumerate(images):
    image.save(f"outputs/res_txt2img_lora_{i}.png")

# unload lora,      lora’s name,  clear lora cache
model.unload_lora_v2("xiaorenshu", True)

SDXL Text2Img Uses

import torch
import time

from lyrasd_model import LyraSdXLTxt2ImgPipeline

# 存放模型文件的路径,应该包含一下结构:
#   1. clip 模型
#   2. 转换好的优化后的 unet 模型,放入其中的 unet_bins 文件夹
#   3. vae 模型
#   4. scheduler 配置

# LyraSD 的 C++ 编译动态链接库,其中包含 C++ CUDA 计算的细节
lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu11_sm80.so"
model_path = "./models/lyrasd_helloworldSDXL20Fp16"
lora_path = "./models/lyrasd_xiaorenshu_lora"

# 构建 Txt2Img 的 Pipeline
model = LyraSdXLTxt2ImgPipeline(model_path, lib_path)

# load lora
# lora model path, name,lora strength
model.load_lora_v2(lora_path, "xiaorenshu", 0.4)

# 准备应用的输入和超参数
prompt = "a cat, cute, cartoon, concise, traditional, chinese painting, Tang and Song Dynasties, masterpiece, 4k, 8k, UHD, best quality"
negative_prompt = "(((horrible))), (((scary))), (((naked))), (((large breasts))), high saturation, colorful, human:2, body:2, low quality, bad quality, lowres, out of frame, duplicate, watermark, signature, text, frames, cut, cropped, malformed limbs, extra limbs, (((missing arms))), (((missing legs)))"
height, width = 512, 512
steps = 30
guidance_scale = 7
generator = torch.Generator().manual_seed(123)
num_images = 1

start = time.perf_counter()
# 推理生成
images = model( prompt,
                height=height,
                width=width,
                num_inference_steps=steps,
                num_images_per_prompt=1,
                guidance_scale=guidance_scale,
                negative_prompt=negative_prompt,
                generator=generator
                )
print("image gen cost: ",time.perf_counter() - start)
# 存储生成的图片
for i, image in enumerate(images):
    image.save(f"outputs/res_txt2img_xl_lora_{i}.png")

# unload lora,参数为 lora 的名字,是否清除 lora 缓存
model.unload_lora_v2("xiaorenshu", True)

Demo output

Text2Img

SD1.5 Text2Img

text2img_demo

SD1.5 Text2Img with Lora

text2img_demo

SDXL Text2Img

text2img_demo

SDXL Text2Img with Lora

text2img_demo

ControlNet Text2Img

Control Image

text2img_demo

SD1.5 ControlNet Text2Img Output

text2img_demo

SDXL ControlNet Text2Img Output

text2img_demo

Docker Environment Recommendation

  • For Cuda 11.X: we recommend nvcr.io/nvidia/pytorch:22.12-py3
  • For Cuda 12.0: we recommend nvcr.io/nvidia/pytorch:23.02-py3
docker pull nvcr.io/nvidia/pytorch:23.02-py3
docker run --rm -it --gpus all -v ./:/lyraSD nvcr.io/nvidia/pytorch:23.02-py3

pip install -r requirements.txt
python txt2img_demo.py

Citation

@Misc{lyraSD_2023,
  author =       {Kangjian Wu, Zhengtao Wang, Yibo Lu, Haoxiong Su, Bin Wu},
  title =        {lyraSD: Accelerating Stable Diffusion with best flexibility},
  howpublished = {\url{https://huggingface.co/TMElyralab/lyraSD}},
  year =         {2024}
}

Report bug