aamixsh's picture
Finished training
273d61b
metadata
base_model: TannerGladson/chess-roberta
tags:
  - generated_from_trainer
datasets:
  - TannerGladson/chess-roberta-whole-move-tuning
metrics:
  - accuracy
model-index:
  - name: 2024.07.20-19.49
    results:
      - task:
          name: Masked Language Modeling
          type: fill-mask
        dataset:
          name: TannerGladson/chess-roberta-whole-move-tuning
          type: TannerGladson/chess-roberta-whole-move-tuning
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.902359997194343

Visualize in Weights & Biases

2024.07.20-19.49

This model is a fine-tuned version of TannerGladson/chess-roberta on the TannerGladson/chess-roberta-whole-move-tuning dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2611
  • Accuracy: 0.9024

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5262 0.2485 1000 0.4272 0.8519
0.413 0.4970 2000 0.3650 0.8711
0.3505 0.7455 3000 0.3138 0.8852
0.3111 0.9939 4000 0.2829 0.8950
0.2817 1.2424 5000 0.2596 0.9025

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.0.1+cu117
  • Datasets 2.17.1
  • Tokenizers 0.19.1