ppo-LunarLander-v2 / README.md
ThomasSimonini's picture
Upload PPO LunarLander-v2 trained agent
aff14f0
|
raw
history blame
1.84 kB
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 271.51 +/- 16.73
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# ppo-LunarLander-v2
This is a pre-trained model of a PPO agent playing LunarLander-v2 using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library.
### Usage (with Stable-baselines3)
Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:
```
pip install stable-baselines3
pip install huggingface_sb3
```
Then, you can use the model like this:
```python
import gym
from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
# Retrieve the model from the hub
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
## filename = name of the model zip file from the repository
checkpoint = load_from_hub(repo_id="ThomasSimonini/ppo-LunarLander-v2", filename="ppo-LunarLander-v2.zip")
model = PPO.load(checkpoint)
# Evaluate the agent
eval_env = gym.make('LunarLander-v2')
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
# Watch the agent play
obs = eval_env.reset()
for i in range(1000):
action, _state = model.predict(obs)
obs, reward, done, info = eval_env.step(action)
eval_env.render()
if done:
obs = eval_env.reset()
eval_env.close()
```
### Evaluation Results
Mean_reward: 241.94 +/- 23.6