Tommert25's picture
End of training
567d274
metadata
license: mit
base_model: pdelobelle/robbert-v2-dutch-base
tags:
  - generated_from_trainer
metrics:
  - recall
  - accuracy
model-index:
  - name: robbert0510_lrate10b32
    results: []

robbert0510_lrate10b32

This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5022
  • Precisions: 0.8217
  • Recall: 0.7879
  • F-measure: 0.8011
  • Accuracy: 0.9168

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.625 1.0 118 0.4136 0.8611 0.6751 0.6866 0.8713
0.3164 2.0 236 0.3284 0.8110 0.7374 0.7474 0.8959
0.187 3.0 354 0.3490 0.7578 0.7662 0.7524 0.9060
0.1083 4.0 472 0.3738 0.8164 0.7748 0.7855 0.9120
0.0778 5.0 590 0.4234 0.7579 0.7677 0.7583 0.9042
0.0526 6.0 708 0.4802 0.8348 0.7556 0.7688 0.9049
0.0358 7.0 826 0.4723 0.8322 0.7671 0.7909 0.9107
0.023 8.0 944 0.4758 0.8024 0.7975 0.7973 0.9107
0.016 9.0 1062 0.5112 0.7991 0.7889 0.7917 0.9084
0.0117 10.0 1180 0.5022 0.8217 0.7879 0.8011 0.9168
0.0072 11.0 1298 0.5286 0.8190 0.7875 0.8009 0.9165
0.0052 12.0 1416 0.5207 0.8056 0.7929 0.7987 0.9135

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0