Tommert25's picture
End of training
cb2a802
|
raw
history blame
2.82 kB
metadata
license: mit
base_model: pdelobelle/robbert-v2-dutch-base
tags:
  - generated_from_trainer
metrics:
  - recall
  - accuracy
model-index:
  - name: robbert0510_lrate9b16
    results: []

robbert0510_lrate9b16

This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5873
  • Precisions: 0.8240
  • Recall: 0.8030
  • F-measure: 0.8121
  • Accuracy: 0.9175

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.6115 1.0 236 0.3939 0.8592 0.6769 0.6912 0.8757
0.3166 2.0 472 0.3750 0.7447 0.7640 0.7458 0.8897
0.194 3.0 708 0.3445 0.7683 0.7462 0.7525 0.9025
0.1292 4.0 944 0.3776 0.8345 0.7570 0.7754 0.9072
0.0755 5.0 1180 0.4667 0.7897 0.8244 0.7995 0.9079
0.0556 6.0 1416 0.4879 0.8233 0.7809 0.7973 0.9086
0.0413 7.0 1652 0.4901 0.7770 0.8020 0.7846 0.9049
0.0245 8.0 1888 0.5467 0.8159 0.7679 0.7836 0.9086
0.015 9.0 2124 0.5914 0.8156 0.7858 0.7957 0.9109
0.0129 10.0 2360 0.5640 0.8041 0.8160 0.8079 0.9133
0.0055 11.0 2596 0.5848 0.8084 0.8044 0.8055 0.9142
0.0068 12.0 2832 0.5752 0.8097 0.7957 0.8017 0.9140
0.0036 13.0 3068 0.5873 0.8240 0.8030 0.8121 0.9175
0.0025 14.0 3304 0.5992 0.8217 0.7913 0.8037 0.9155

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0