|
from opencompass.multimodal.models.llava import LLaVAMMBenchPromptConstructor, LLaVABasePostProcessor |
|
|
|
|
|
val_pipeline = [ |
|
dict(type='mmpretrain.torchvision/Resize', |
|
size=(224, 224), |
|
interpolation=3), |
|
dict(type='mmpretrain.torchvision/ToTensor'), |
|
dict( |
|
type='mmpretrain.torchvision/Normalize', |
|
mean=(0.48145466, 0.4578275, 0.40821073), |
|
std=(0.26862954, 0.26130258, 0.27577711), |
|
), |
|
dict( |
|
type='mmpretrain.PackInputs', |
|
algorithm_keys=[ |
|
'question', 'category', 'l2-category', 'context', 'index', |
|
'options_dict', 'options', 'split' |
|
], |
|
), |
|
] |
|
|
|
dataset = dict(type='opencompass.MMBenchDataset', |
|
data_file='data/mmbench/mmbench_test_20230712.tsv', |
|
pipeline=val_pipeline) |
|
|
|
llava_mmbench_dataloader = dict( |
|
batch_size=1, |
|
num_workers=4, |
|
dataset=dataset, |
|
collate_fn=dict(type='pseudo_collate'), |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
) |
|
|
|
|
|
llava_mmbench_model = dict( |
|
type='llava', |
|
model_path='/path/to/llava', |
|
prompt_constructor=dict(type=LLaVAMMBenchPromptConstructor), |
|
post_processor=dict(type=LLaVABasePostProcessor) |
|
) |
|
|
|
|
|
llava_mmbench_evaluator = [ |
|
dict(type='opencompass.DumpResults', |
|
save_path='work_dirs/llava-7b-mmbench.xlsx') |
|
] |
|
|