TwT-6's picture
Upload 2667 files
256a159 verified
raw
history blame
15.1 kB
"""Chat Inferencer."""
import os
import os.path as osp
from typing import List, Optional, Union
import mmengine
from mmengine import is_list_of
from tqdm import tqdm
from opencompass.models import APITemplateParser as _APITemplateParser
from opencompass.models import BaseModel
from opencompass.models import LMTemplateParser as _LMTemplateParser
from opencompass.registry import ICL_INFERENCERS
from opencompass.utils.prompt import PromptList
from ..icl_prompt_template import PromptTemplate
from ..icl_retriever import BaseRetriever
from ..utils.logging import get_logger
from .icl_base_inferencer import BaseInferencer, dump_results_dict
logger = get_logger(__name__)
def promptlist_to_openai(prompt: Union[str, PromptList]):
output = []
if isinstance(prompt, str):
return [dict(role='user', content=prompt)]
for item in prompt:
if 'section' in item:
continue
if isinstance(item, str) and item:
output.append(dict(role='user', content=item))
elif item['role'] == 'SYSTEM':
output.append(dict(role='system', content=item['prompt']))
elif item['role'] == 'HUMAN':
output.append(dict(role='user', content=item['prompt']))
elif item['role'] == 'BOT':
output.append(dict(role='assistant', content=item['prompt']))
return output
class LMTemplateParser:
"""LMTemplateParser accepts OpenAI format dialog inputs."""
def __init__(self, meta_template: Optional[dict] = None):
self.meta_template = meta_template
self.roles = {}
role_mapping = {
'SYSTEM': 'system',
'HUMAN': 'user',
'BOT': 'assistant',
}
if meta_template:
for item in meta_template.get('round', []):
role = role_mapping.get(item['role'], item['role'])
self.roles[role] = item.copy()
for item in meta_template.get('reserved_roles', []):
role = role_mapping.get(item['role'], item['role'])
self.roles[role] = item.copy()
def parse_template(self, chat: List[dict], mode='gen') -> str:
if is_list_of(chat, list):
# Handle batch inputs
return [self.parse_template(item) for item in chat]
assert is_list_of(chat, dict)
prompt = ''
if self.roles:
for dialog in chat:
role_cfg = self.roles.get(dialog['role'], {})
prompt += (role_cfg.get('begin') or '')
prompt += (dialog.get('content') or '')
prompt += (role_cfg.get('end') or '')
prompt += (self.roles['assistant'].get('begin') or '')
else:
# in case the model does not have any meta template
last_sep = ''
for item in chat:
prompt += last_sep + (item.get('content') or '')
last_sep = '\n'
return prompt
class APITemplateParser:
"""APITemplateParser accepts OpenAI format dialog inputs."""
def __init__(self, meta_template: Optional[dict] = None):
self.meta_template = meta_template
self.roles = {}
role_mapping = {
'SYSTEM': 'system',
'HUMAN': 'user',
'BOT': 'assistant',
}
if meta_template:
for item in meta_template.get('round', []):
role = role_mapping.get(item['role'], item['role'])
self.roles[role] = item.copy()
for item in meta_template.get('reserved_roles', []):
role = role_mapping.get(item['role'], item['role'])
self.roles[role] = item.copy()
else:
self.roles = dict(
system=dict(api_role='SYSTEM'),
user=dict(api_role='HUMAN'),
assistant=dict(api_role='BOT', generate=True),
)
def parse_template(self, chat: List[dict], mode='gen') -> str:
if is_list_of(chat, list):
# Handle batch inputs
return [self.parse_template(item) for item in chat]
assert is_list_of(chat, dict)
prompt = []
for dialog in chat:
if dialog['role'] in self.roles:
role = self.roles[dialog['role']]['api_role']
else:
role = dialog['role']
prompt.append(dict(role=role, prompt=dialog.get('content') or ''))
return PromptList(prompt)
class ChatOutputHandler:
def __init__(self) -> None:
self.results_dict = {}
def write_to_json(self, save_dir: str, filename: str):
"""Dump the result to a json file."""
dump_results_dict(self.results_dict, osp.join(save_dir, filename))
def save_results(self,
origin_prompt: list,
prediction: str,
idx: int,
gold: str = None):
result_dict = {}
if gold:
result_dict['gold'] = gold
result_dict.update({
'prediction': prediction,
'origin_prompt': origin_prompt,
})
self.results_dict[str(idx)] = result_dict
def save_multiround_results(self,
origin_prompt: list,
prediction: str,
idx: int,
gold: str = None):
result_dict = self.results_dict.get(str(idx), {
'gold': [],
'prediction': [],
'origin_prompt': [],
})
result_dict['gold'].append(gold)
result_dict['prediction'].append(prediction)
result_dict['origin_prompt'].append(origin_prompt)
self.results_dict[str(idx)] = result_dict
@ICL_INFERENCERS.register_module()
class ChatInferencer(BaseInferencer):
HandlerType = ChatOutputHandler
def __init__(
self,
model,
output_json_filepath: Optional[str] = './icl_inference_output',
output_json_filename: Optional[str] = 'predictions',
save_every: Optional[int] = 1,
infer_mode: str = 'last',
**kwargs) -> None:
super().__init__(
model=model,
output_json_filename=output_json_filename,
output_json_filepath=output_json_filepath,
**kwargs,
)
assert infer_mode in ['last', 'every', 'every_with_gt']
self.infer_mode = infer_mode
self.model: BaseModel
self._set_meta_template(self.model)
if self.model.is_api and save_every is None:
save_every = 1
self.save_every = save_every
self.dialogue_mode = False
def _set_meta_template(self, model):
origin = model.template_parser
if isinstance(origin, _APITemplateParser):
model.template_parser = APITemplateParser(origin.meta_template)
if isinstance(origin, _LMTemplateParser):
model.template_parser = LMTemplateParser(origin.meta_template)
def inference(self,
retriever: BaseRetriever,
ice_template: Optional[PromptTemplate] = None,
prompt_template: Optional[PromptTemplate] = None,
output_json_filepath: Optional[str] = None,
output_json_filename: Optional[str] = None) -> dict:
# 1. Preparation for output logs
output_handler = self.HandlerType()
if output_json_filepath is None:
output_json_filepath = self.output_json_filepath
if output_json_filename is None:
output_json_filename = self.output_json_filename
# 2. Get results of retrieval process
ice_idx_list = retriever.retrieve()
# 3. Generate prompts for testing input
chat_list = self.get_chat_list(
ice_idx_list,
retriever,
prompt_template=prompt_template,
)
# Create tmp json file for saving intermediate results and future
# resuming
index = 0
tmp_json_filepath = os.path.join(output_json_filepath,
'tmp_' + output_json_filename)
if osp.exists(tmp_json_filepath):
# TODO: move resume to output handler
try:
tmp_result_dict = mmengine.load(tmp_json_filepath)
except Exception:
pass
else:
output_handler.results_dict = tmp_result_dict
index = len(tmp_result_dict)
# 4. Wrap prompts with Dataloader
dataloader = self.get_dataloader(chat_list[index:], batch_size=1)
# 5. Inference for prompts in each batch
logger.info('Starting inference process...')
for datum in tqdm(dataloader, disable=not self.is_main_process):
chat = datum[0]
if self.infer_mode == 'last':
self.infer_last(chat, index, output_handler)
elif self.infer_mode == 'every':
self.infer_every(chat, index, output_handler)
elif self.infer_mode == 'every_with_gt':
self.infer_every_with_gt(chat, index, output_handler)
index += 1
# Save intermediate results
if (self.save_every is not None and index % self.save_every == 0
and self.is_main_process):
output_handler.write_to_json(output_json_filepath,
'tmp_' + output_json_filename)
# 4. Output
if self.is_main_process:
os.makedirs(output_json_filepath, exist_ok=True)
output_handler.write_to_json(output_json_filepath,
output_json_filename)
if osp.exists(tmp_json_filepath):
os.remove(tmp_json_filepath)
return output_handler.results_dict
def get_chat_list(self,
ice_idx_list: List[List[int]],
retriever: BaseRetriever,
prompt_template: Optional[PromptTemplate] = None):
prompt_list = []
input_columns = retriever.dataset_reader.input_columns
output_column = retriever.dataset_reader.output_column
def chat_from_entry(entry):
if prompt_template is None and len(input_columns) == 1:
# Directly use the input column as the user input
user = entry.get(input_columns[0])
assistant = entry.get(output_column, '')
return [
dict(role='user', content=user),
dict(role='assistant', content=assistant),
]
elif prompt_template is not None:
# Use prompt template to generate chat history
chat = promptlist_to_openai(
prompt_template.generate_item(entry))
gold = entry.get(output_column, '')
if chat[-1]['role'] != 'assistant':
chat.append(dict(role='assistant', content=gold))
return chat
else:
raise ValueError()
for idx, ice_idx in enumerate(ice_idx_list):
# NOTE: The in-context examples won't be used by now.
item = {
k: v
for k, v in retriever.test_ds[idx].items()
if k in input_columns or k == output_column
}
if all(isinstance(value, str) for value in item.values()):
# Every column is a single string
chat = chat_from_entry(item)
elif all(is_list_of(value, str) for value in item.values()):
# Every column is a list of string for multi-round chat
entries = [dict(zip(item, v)) for v in zip(*item.values())]
chat = sum((chat_from_entry(entry) for entry in entries), [])
elif len(input_columns) == 1 and is_list_of(
item[input_columns[0]], dict):
# Single input column and it's already a chat.
chat = item[input_columns[0]]
elif 'dialogue' in input_columns:
chat = item['dialogue']
self.dialogue_mode = True
else:
raise ValueError('Cannot construct chat from the dataset.')
prompt_list.append(chat)
return prompt_list
def infer_last(self, chat: List[dict], index: int, output_handler):
assistant_indices = [
i for i, item in enumerate(chat) if item['role'] == 'assistant'
]
history = chat[:assistant_indices[-1]]
output = self.model.generate_from_template([history],
max_out_len=512)[0]
output_handler.save_results(
origin_prompt=history,
prediction=output,
idx=index,
gold=chat[assistant_indices[-1]]['content'],
)
def infer_every(self, chat: List[dict], index: int, output_handler):
assistant_indices = [
i for i, item in enumerate(chat) if item['role'] == 'assistant'
]
index_copy = index
for i in assistant_indices:
history = chat[:i]
output = self.model.generate_from_template([history],
max_out_len=512)[0]
chat[i]['content'] = output
if not self.dialogue_mode:
output_handler.save_multiround_results(
origin_prompt=history[-1]['content'],
prediction=output,
idx=index,
gold=chat[i]['content'],
)
index += 1
if self.dialogue_mode:
# dialogue mode for subjective evaluation
assert len(chat) % 2 == 0
round_num = int(len(chat) / 2)
preds_list = []
for i in range(round_num):
temp_dict = {
'round': i + 1,
'user': chat[i * 2]['content'],
'assistant': chat[i * 2 + 1]['content']
}
preds_list.append(temp_dict)
output_handler.save_results(
origin_prompt=None,
prediction=preds_list,
idx=index_copy,
gold=None,
)
def infer_every_with_gt(self, chat: List[dict], index: int,
output_handler):
assistant_indices = [
i for i, item in enumerate(chat) if item['role'] == 'assistant'
]
for i in assistant_indices:
history = chat[:i]
output = self.model.generate_from_template([history],
max_out_len=512)[0]
output_handler.save_multiround_results(
origin_prompt=history[-1]['content'],
prediction=output,
idx=index,
gold=chat[i]['content'],
)
index += 1