|
import argparse |
|
import os.path as osp |
|
import random |
|
import time |
|
from typing import Any |
|
|
|
from mmengine.config import Config, ConfigDict |
|
from mmengine.utils import mkdir_or_exist |
|
|
|
from opencompass.registry import (ICL_INFERENCERS, ICL_PROMPT_TEMPLATES, |
|
ICL_RETRIEVERS, TASKS) |
|
from opencompass.tasks.base import BaseTask |
|
from opencompass.utils import (build_dataset_from_cfg, build_model_from_cfg, |
|
get_infer_output_path, get_logger, |
|
task_abbr_from_cfg) |
|
|
|
|
|
@TASKS.register_module(force=(__name__ == '__main__')) |
|
class OpenICLAttackTask(BaseTask): |
|
"""OpenICL Inference Task. |
|
|
|
This task is used to run the inference process. |
|
""" |
|
|
|
name_prefix = 'OpenICLAttack' |
|
log_subdir = 'logs/attack' |
|
output_subdir = 'attack' |
|
|
|
def __init__(self, cfg: ConfigDict): |
|
super().__init__(cfg) |
|
run_cfg = self.model_cfgs[0].get('run_cfg', {}) |
|
self.num_gpus = run_cfg.get('num_gpus', 0) |
|
self.num_procs = run_cfg.get('num_procs', 1) |
|
self.logger = get_logger() |
|
|
|
def get_command(self, cfg_path, template): |
|
"""Get the command template for the task. |
|
|
|
Args: |
|
cfg_path (str): The path to the config file of the task. |
|
template (str): The template which have '{task_cmd}' to format |
|
the command. |
|
""" |
|
script_path = __file__ |
|
if self.num_gpus > 0: |
|
port = random.randint(12000, 32000) |
|
command = (f'torchrun --master_port={port} ' |
|
f'--nproc_per_node {self.num_procs} ' |
|
f'{script_path} {cfg_path}') |
|
else: |
|
command = f'python {script_path} {cfg_path}' |
|
|
|
return template.format(task_cmd=command) |
|
|
|
def prompt_selection(self, inferencer, prompts): |
|
prompt_dict = {} |
|
|
|
for prompt in prompts: |
|
acc = inferencer.predict(prompt) |
|
prompt_dict[prompt] = acc |
|
self.logger.info('{:.2f}, {}\n'.format(acc * 100, prompt)) |
|
|
|
sorted_prompts = sorted(prompt_dict.items(), |
|
key=lambda x: x[1], |
|
reverse=True) |
|
return sorted_prompts |
|
|
|
def run(self): |
|
self.logger.info(f'Task {task_abbr_from_cfg(self.cfg)}') |
|
for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs): |
|
self.max_out_len = model_cfg.get('max_out_len', None) |
|
self.batch_size = model_cfg.get('batch_size', None) |
|
self.model = build_model_from_cfg(model_cfg) |
|
|
|
for dataset_cfg in dataset_cfgs: |
|
self.model_cfg = model_cfg |
|
self.dataset_cfg = dataset_cfg |
|
self.infer_cfg = self.dataset_cfg['infer_cfg'] |
|
self.dataset = build_dataset_from_cfg(self.dataset_cfg) |
|
self.sub_cfg = { |
|
'models': [self.model_cfg], |
|
'datasets': [[self.dataset_cfg]], |
|
} |
|
out_path = get_infer_output_path( |
|
self.model_cfg, self.dataset_cfg, |
|
osp.join(self.work_dir, 'attack')) |
|
if osp.exists(out_path): |
|
continue |
|
self._inference() |
|
|
|
def _inference(self): |
|
self.logger.info( |
|
f'Start inferencing {task_abbr_from_cfg(self.sub_cfg)}') |
|
|
|
assert hasattr(self.infer_cfg, 'ice_template') or hasattr(self.infer_cfg, 'prompt_template'), \ |
|
'Both ice_template and prompt_template cannot be None simultaneously.' |
|
ice_template = None |
|
if hasattr(self.infer_cfg, 'ice_template'): |
|
ice_template = ICL_PROMPT_TEMPLATES.build( |
|
self.infer_cfg['ice_template']) |
|
|
|
prompt_template = None |
|
if hasattr(self.infer_cfg, 'prompt_template'): |
|
prompt_template = ICL_PROMPT_TEMPLATES.build( |
|
self.infer_cfg['prompt_template']) |
|
|
|
retriever_cfg = self.infer_cfg['retriever'].copy() |
|
retriever_cfg['dataset'] = self.dataset |
|
retriever = ICL_RETRIEVERS.build(retriever_cfg) |
|
|
|
|
|
inferencer_cfg = self.infer_cfg['inferencer'] |
|
inferencer_cfg['model'] = self.model |
|
self._set_default_value(inferencer_cfg, 'max_out_len', |
|
self.max_out_len) |
|
self._set_default_value(inferencer_cfg, 'batch_size', self.batch_size) |
|
inferencer_cfg['max_seq_len'] = self.model_cfg['max_seq_len'] |
|
inferencer_cfg['dataset_cfg'] = self.dataset_cfg |
|
inferencer = ICL_INFERENCERS.build(inferencer_cfg) |
|
|
|
out_path = get_infer_output_path(self.model_cfg, self.dataset_cfg, |
|
osp.join(self.work_dir, 'attack')) |
|
out_dir, out_file = osp.split(out_path) |
|
mkdir_or_exist(out_dir) |
|
|
|
from config import LABEL_SET |
|
from prompt_attack.attack import create_attack |
|
from prompt_attack.goal_function import PromptGoalFunction |
|
|
|
inferencer.retriever = retriever |
|
inferencer.prompt_template = prompt_template |
|
inferencer.ice_template = ice_template |
|
inferencer.output_json_filepath = out_dir |
|
inferencer.output_json_filename = out_file |
|
goal_function = PromptGoalFunction( |
|
inference=inferencer, |
|
query_budget=self.cfg['attack'].query_budget, |
|
logger=self.logger, |
|
model_wrapper=None, |
|
verbose='True') |
|
if self.cfg['attack']['dataset'] not in LABEL_SET: |
|
|
|
self.cfg['attack']['dataset'] = 'mmlu' |
|
attack = create_attack(self.cfg['attack'], goal_function) |
|
|
|
prompts = self.infer_cfg['inferencer']['original_prompt_list'] |
|
sorted_prompts = self.prompt_selection(inferencer, prompts) |
|
if True: |
|
|
|
for prompt, acc in sorted_prompts: |
|
self.logger.info('Prompt: {}, acc: {:.2f}%\n'.format( |
|
prompt, acc * 100)) |
|
with open(out_dir + 'attacklog.txt', 'a+') as f: |
|
f.write('Prompt: {}, acc: {:.2f}%\n'.format( |
|
prompt, acc * 100)) |
|
|
|
for init_prompt, init_acc in sorted_prompts[:self.cfg['attack']. |
|
prompt_topk]: |
|
if init_acc > 0: |
|
init_acc, attacked_prompt, attacked_acc, dropped_acc = attack.attack( |
|
init_prompt) |
|
self.logger.info('Original prompt: {}'.format(init_prompt)) |
|
self.logger.info('Attacked prompt: {}'.format( |
|
attacked_prompt.encode('utf-8'))) |
|
self.logger.info( |
|
'Original acc: {:.2f}%, attacked acc: {:.2f}%, dropped acc: {:.2f}%' |
|
.format(init_acc * 100, attacked_acc * 100, |
|
dropped_acc * 100)) |
|
with open(out_dir + 'attacklog.txt', 'a+') as f: |
|
f.write('Original prompt: {}\n'.format(init_prompt)) |
|
f.write('Attacked prompt: {}\n'.format( |
|
attacked_prompt.encode('utf-8'))) |
|
f.write( |
|
'Original acc: {:.2f}%, attacked acc: {:.2f}%, dropped acc: {:.2f}%\n\n' |
|
.format(init_acc * 100, attacked_acc * 100, |
|
dropped_acc * 100)) |
|
else: |
|
with open(out_dir + 'attacklog.txt', 'a+') as f: |
|
f.write('Init acc is 0, skip this prompt\n') |
|
f.write('Original prompt: {}\n'.format(init_prompt)) |
|
f.write('Original acc: {:.2f}% \n\n'.format(init_acc * |
|
100)) |
|
|
|
def _set_default_value(self, cfg: ConfigDict, key: str, value: Any): |
|
if key not in cfg: |
|
assert value, (f'{key} must be specified!') |
|
cfg[key] = value |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Model Inferencer') |
|
parser.add_argument('config', help='Config file path') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
cfg = Config.fromfile(args.config) |
|
start_time = time.time() |
|
inferencer = OpenICLAttackTask(cfg) |
|
inferencer.run() |
|
end_time = time.time() |
|
get_logger().info(f'time elapsed: {end_time - start_time:.2f}s') |
|
|