TwT-6's picture
Upload 2667 files
256a159 verified
import re
import sys
import threading
import time
import warnings
from abc import abstractmethod
from copy import deepcopy
from queue import Queue
from time import sleep
from typing import Dict, List, Optional, Tuple, Union
from opencompass.utils import get_logger
from opencompass.utils.prompt import PromptList
from .base import BaseModel
PromptType = Union[PromptList, str]
class BaseAPIModel(BaseModel):
"""Base class for API model wrapper.
Args:
path (str): The path to the model.
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 1.
retry (int): Number of retires if the API call fails. Defaults to 2.
max_seq_len (int): The maximum sequence length of the model. Defaults
to 2048.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
generation_kwargs (Dict, optional): The generation kwargs for the
model. Defaults to dict().
"""
is_api: bool = True
def __init__(self,
path: str,
query_per_second: int = 1,
rpm_verbose: bool = False,
retry: int = 2,
max_seq_len: int = 2048,
meta_template: Optional[Dict] = None,
generation_kwargs: Dict = dict()):
self.path = path
self.max_seq_len = max_seq_len
self.meta_template = meta_template
self.retry = retry
self.query_per_second = query_per_second
self.token_bucket = TokenBucket(query_per_second, rpm_verbose)
self.template_parser = APITemplateParser(meta_template)
self.logger = get_logger()
self.generation_kwargs = generation_kwargs
@abstractmethod
def generate(self, inputs: List[PromptType],
max_out_len: int) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str or PromptList]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
raise NotImplementedError(f'{self.__class__.__name__} does not support'
' gen-based evaluation yet, try ppl-based '
'instead.')
def flush(self):
"""Ensure simultaneous emptying of stdout and stderr when concurrent
resources are available.
When employing multiprocessing with standard I/O redirected to files,
it is crucial to clear internal data for examination or prevent log
loss in case of system failures."
"""
if hasattr(self, 'tokens'):
sys.stdout.flush()
sys.stderr.flush()
def acquire(self):
"""Acquire concurrent resources if exists.
This behavior will fall back to wait with query_per_second if there are
no concurrent resources.
"""
if hasattr(self, 'tokens'):
self.tokens.acquire()
else:
self.wait()
def release(self):
"""Release concurrent resources if acquired.
This behavior will fall back to do nothing if there are no concurrent
resources.
"""
if hasattr(self, 'tokens'):
self.tokens.release()
@abstractmethod
def get_ppl(self,
inputs: List[PromptType],
mask_length: Optional[List[int]] = None) -> List[float]:
"""Get perplexity scores given a list of inputs.
Args:
inputs (List[str or PromptList]): A list of strings.
mask_length (Optional[List[int]]): A list of mask lengths. If
provided, the perplexity scores will be calculated with the
first mask_length[i] tokens masked out. It's okay to skip
its implementation if advanced features in PPLInfernecer is
not needed.
Returns:
List[float]: A list of perplexity scores.
"""
raise NotImplementedError(f'{self.__class__.__name__} does not support'
' ppl-based evaluation yet, try gen-based '
'instead.')
def get_token_len(self, prompt: str) -> int:
"""Get lengths of the tokenized string. Only English and Chinese
characters are counted for now. Users are encouraged to override this
method if more accurate length is needed.
Args:
prompt (str): Input string.
Returns:
int: Length of the input tokens
"""
english_parts = re.findall(r'[A-Za-z0-9]+', prompt)
chinese_parts = re.findall(r'[\u4e00-\u9FFF]+', prompt)
# Count English words
english_count = sum(len(part.split()) for part in english_parts)
# Count Chinese words
chinese_count = sum(len(part) for part in chinese_parts)
return english_count + chinese_count
def wait(self):
"""Wait till the next query can be sent.
Applicable in both single-thread and multi-thread environments.
"""
return self.token_bucket.get_token()
def to(self, device):
pass
class APITemplateParser:
"""Intermidate prompt template parser, specifically for API models.
Args:
meta_template (Dict): The meta template for the model.
"""
def __init__(self, meta_template: Optional[Dict] = None):
self.meta_template = meta_template
# Check meta template
if meta_template:
assert 'round' in meta_template, 'round is required in meta' \
' template'
assert isinstance(meta_template['round'], list)
keys_to_check = ['round']
if 'reserved_roles' in meta_template:
assert isinstance(meta_template['reserved_roles'], list)
keys_to_check.append('reserved_roles')
self.roles: Dict[str, dict] = dict() # maps role name to config
for meta_key in keys_to_check:
for item in meta_template[meta_key]:
assert isinstance(item, (str, dict))
if isinstance(item, dict):
assert item['role'] not in self.roles, \
'role in meta prompt must be unique!'
self.roles[item['role']] = item.copy()
def parse_template(self, prompt_template: PromptType,
mode: str) -> PromptType:
"""Parse the intermidate prompt template, and wrap it with meta
template if applicable. When the meta template is set and the input is
a PromptList, the return value will be a PromptList containing the full
conversation history. Each item looks like:
.. code-block:: python
{'role': 'user', 'prompt': '...'}).
Args:
prompt_template (List[str or PromptList]): An intermidate prompt
template (potentially before being wrapped by meta template).
mode (str): Parsing mode. Choices are 'ppl' and 'gen'.
Returns:
List[str or PromptList]: The finalized prompt or a conversation.
"""
assert isinstance(prompt_template, (str, list, PromptList, tuple))
if not isinstance(prompt_template, (str, PromptList)):
return [self.parse_template(p, mode=mode) for p in prompt_template]
assert mode in ['ppl', 'gen']
if isinstance(prompt_template, str):
return prompt_template
if self.meta_template:
prompt = PromptList()
# Whether to keep generating the prompt
generate = True
section_stack = [] # stores tuples: (section_name, start_idx)
for i, item in enumerate(prompt_template):
if not generate:
break
if isinstance(item, str):
if item.strip():
# TODO: logger
warnings.warn('Non-empty string in prompt template '
'will be ignored in API models.')
elif isinstance(item, dict) and 'section' in item:
if item['pos'] == 'end':
section_name, start_idx = section_stack.pop(-1)
assert section_name == item['section']
if section_name in ['round', 'ice']:
dialogue = prompt_template[start_idx:i]
round_ranges = self._split_rounds(
dialogue, self.meta_template['round'])
# Consider inserting multiple round examples into
# template
for i in range(len(round_ranges) - 1):
start = round_ranges[i]
end = round_ranges[i + 1]
round_template = dialogue[start:end]
role_dict = self._update_role_dict(
round_template)
api_prompts, generate = self._prompt2api(
self.meta_template['round'],
role_dict,
# Start generating only when the mode is in
# generation and the template reaches the
# last round
for_gen=mode == 'gen'
and section_name == 'round'
and i == len(round_ranges) - 2)
prompt += api_prompts
elif item['pos'] == 'begin':
assert item['section'] in [
'begin', 'round', 'end', 'ice'
]
section_stack.append((item['section'], i + 1))
else:
raise ValueError(f'Invalid pos {item["pos"]}')
elif section_stack[-1][0] in ['begin', 'end']:
role_dict = self._update_role_dict(item)
api_prompts, generate = self._prompt2api(
item, role_dict, for_gen=mode == 'gen')
prompt.append(api_prompts)
# merge the consecutive prompts assigned to the same role
new_prompt = PromptList([prompt[0]])
last_role = prompt[0]['role']
for item in prompt[1:]:
if item['role'] == last_role:
new_prompt[-1]['prompt'] += '\n' + item['prompt']
else:
last_role = item['role']
new_prompt.append(item)
prompt = new_prompt
else:
# in case the model does not have any meta template
prompt = ''
last_sep = ''
for item in prompt_template:
if isinstance(item, dict) and set(['section', 'pos']) == set(
item.keys()):
continue
if isinstance(item, str):
if item:
prompt += last_sep + item
elif item.get('prompt', ''):
prompt += last_sep + item.get('prompt', '')
last_sep = '\n'
return prompt
def _update_role_dict(self, prompts: Union[List, str]) -> Dict[str, Dict]:
"""Update the default role dict with the given prompts."""
role_dict = deepcopy(self.roles)
if isinstance(prompts, str):
return role_dict
elif isinstance(prompts, dict):
prompts = [prompts]
for prompt in prompts:
if isinstance(prompt, dict):
role = prompt['role']
if role not in self.roles:
role = prompt.get('fallback_role', None)
if not role:
print(f'{prompt} neither has an appropriate role nor '
'a fallback role.')
role_dict[role].update(prompt)
return role_dict
def _split_rounds(
self, prompt_template: List[Union[str, Dict]],
single_round_template: List[Union[str, Dict]]) -> List[int]:
"""Split the prompt template into rounds, based on single round
template.
Return the index ranges of each round. Specifically,
prompt_template[res[i]:res[i+1]] represents the i-th round in the
template.
"""
role_idxs = {
role_cfg['role']: i
for i, role_cfg in enumerate(single_round_template)
if not isinstance(role_cfg, str)
}
last_role_idx = -1
cutoff_idxs = [0]
for idx, template in enumerate(prompt_template):
if isinstance(template, str):
continue
role_idx = role_idxs.get(template['role'], None)
if role_idx is None:
try:
role_idx = role_idxs[template['fallback_role']]
except KeyError:
raise KeyError(f'{template} neither has an appropriate '
'role nor a fallback role.')
if role_idx <= last_role_idx:
cutoff_idxs.append(idx)
last_role_idx = role_idx
cutoff_idxs.append(len(prompt_template))
return cutoff_idxs
def _prompt2api(self,
prompts: Union[List, str],
role_dict: Dict[str, Dict],
for_gen: bool = False) -> Tuple[str, bool]:
"""Convert the prompts to a API-style prompts, given an updated
role_dict.
Args:
prompts (Union[List, str]): The prompts to be converted.
role_dict (Dict[str, Dict]): The updated role dict.
for_gen (bool): If True, the prompts will be converted for
generation tasks. The conversion stops before the first
role whose "generate" is set to True.
Returns:
Tuple[str, bool]: The converted string, and whether the follow-up
conversion should be proceeded.
"""
cont = True
if isinstance(prompts, str):
return prompts, cont
elif isinstance(prompts, dict):
api_role, cont = self._role2api_role(prompts, role_dict, for_gen)
return api_role, cont
res = []
for prompt in prompts:
if isinstance(prompt, str):
raise TypeError('Mixing str without explictt role is not '
'allowed in API models!')
else:
api_role, cont = self._role2api_role(prompt, role_dict,
for_gen)
if api_role:
res.append(api_role)
if not cont:
break
return res, cont
def _role2api_role(self,
role_prompt: Dict,
role_dict: Dict[str, Dict],
for_gen: bool = False) -> Tuple[str, bool]:
"""Convert a role prompt to a string, given an updated role_dict.
Args:
role_prompt (Dict): The role prompt to be converted.
role_dict (Dict[str, Dict]): The updated role dict.
for_gen (bool): If True, the prompts will be converted for
generation tasks. The conversion stops before the first
role whose "generate" is set to True.
Returns:
Tuple[str, bool]: The converted string, and whether the follow-up
conversion should be proceeded.
"""
merged_prompt = role_dict.get(
role_prompt['role'],
role_dict.get(role_prompt.get('fallback_role')))
# res_api_prompt = dict(type='', )
if for_gen and merged_prompt.get('generate', False):
return None, False
res = {}
res['role'] = merged_prompt['api_role']
res['prompt'] = merged_prompt.get('begin', '')
res['prompt'] += merged_prompt.get('prompt', '')
res['prompt'] += merged_prompt.get('end', '')
return res, True
class TokenBucket:
"""A token bucket for rate limiting.
Args:
query_per_second (float): The rate of the token bucket.
"""
def __init__(self, rate, verbose=False):
self._rate = rate
self._tokens = threading.Semaphore(0)
self.started = False
self._request_queue = Queue()
self.logger = get_logger()
self.verbose = verbose
def _add_tokens(self):
"""Add tokens to the bucket."""
while True:
if self._tokens._value < self._rate:
self._tokens.release()
sleep(1 / self._rate)
def get_token(self):
"""Get a token from the bucket."""
if not self.started:
self.started = True
threading.Thread(target=self._add_tokens, daemon=True).start()
self._tokens.acquire()
if self.verbose:
cur_time = time.time()
while not self._request_queue.empty():
if cur_time - self._request_queue.queue[0] > 60:
self._request_queue.get()
else:
break
self._request_queue.put(cur_time)
self.logger.info(f'Current RPM {self._request_queue.qsize()}.')