|
import os |
|
from typing import Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
import transformers |
|
|
|
from opencompass.models.base import BaseModel |
|
from opencompass.models.base_api import APITemplateParser |
|
from opencompass.registry import MODELS |
|
from opencompass.utils.logging import get_logger |
|
from opencompass.utils.prompt import PromptList |
|
|
|
PromptType = Union[PromptList, str] |
|
|
|
|
|
class MultiTokenEOSCriteria(transformers.StoppingCriteria): |
|
"""Criteria to stop on the specified multi-token sequence.""" |
|
|
|
def __init__( |
|
self, |
|
sequence: str, |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
batch_size: int, |
|
): |
|
self.done_tracker = [False] * batch_size |
|
self.sequence = sequence |
|
self.sequence_ids = tokenizer.encode(sequence, |
|
add_special_tokens=False) |
|
self.sequence_id_len = len(self.sequence_ids) |
|
self.tokenizer = tokenizer |
|
|
|
def __call__(self, input_ids, scores, **kwargs) -> bool: |
|
|
|
lookback_ids_batch = input_ids[:, -self.sequence_id_len:] |
|
lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch) |
|
for i, done in enumerate(self.done_tracker): |
|
if done: |
|
continue |
|
self.done_tracker[i] = self.sequence in lookback_tokens_batch[i] |
|
return False not in self.done_tracker |
|
|
|
|
|
@MODELS.register_module() |
|
class HuggingFace(BaseModel): |
|
"""Model wrapper around HuggingFace models. |
|
|
|
Args: |
|
path (str): The name or path to HuggingFace's model. |
|
hf_cache_dir: Set the cache dir to HF model cache dir. If None, it will |
|
use the env variable HF_MODEL_HUB. Defaults to None. |
|
max_seq_len (int): The maximum length of the input sequence. Defaults |
|
to 2048. |
|
tokenizer_path (str): The path to the tokenizer. Defaults to None. |
|
tokenizer_kwargs (dict): Keyword arguments for the tokenizer. |
|
Defaults to {}. |
|
peft_path (str, optional): The name or path to the HuggingFace's PEFT |
|
model. If None, the original model will not be converted to PEFT. |
|
Defaults to None. |
|
tokenizer_only (bool): If True, only the tokenizer will be initialized. |
|
Defaults to False. |
|
model_kwargs (dict): Keyword arguments for the model, used in loader. |
|
Defaults to dict(device_map='auto'). |
|
meta_template (Dict, optional): The model's meta prompt |
|
template if needed, in case the requirement of injecting or |
|
wrapping of any meta instructions. |
|
extract_pred_after_decode (bool): Whether to extract the prediction |
|
string from the decoded output string, instead of extract the |
|
prediction tokens before decoding. Defaults to False. |
|
batch_padding (bool): If False, inference with be performed in for-loop |
|
without batch padding. |
|
pad_token_id (int): The id of the padding token. Defaults to None. Use |
|
(#vocab + pad_token_id) if get negative value. |
|
mode (str, optional): The method of input truncation when input length |
|
exceeds max_seq_len. 'mid' represents the part of input to |
|
truncate. Defaults to 'none'. |
|
use_fastchat_template (str, optional): Whether to use fastchat to get |
|
the conversation template. If True, fastchat needs to be |
|
implemented first. Defaults to False. |
|
end_str (str, optional): Whether to trim generated strings with end_str |
|
if the model has special ending strings that are not handled well. |
|
Defaults to None. |
|
|
|
Note: |
|
About ``extract_pred_after_decode``: Commonly, we should extract the |
|
the prediction tokens before decoding. But for some tokenizers using |
|
``sentencepiece``, like LLaMA, this behavior may change the number of |
|
whitespaces, which is harmful for Python programming tasks. |
|
""" |
|
|
|
def __init__(self, |
|
path: str, |
|
hf_cache_dir: Optional[str] = None, |
|
max_seq_len: int = 2048, |
|
tokenizer_path: Optional[str] = None, |
|
tokenizer_kwargs: dict = dict(), |
|
peft_path: Optional[str] = None, |
|
tokenizer_only: bool = False, |
|
model_kwargs: dict = dict(device_map='auto'), |
|
generation_kwargs: dict = dict(), |
|
meta_template: Optional[Dict] = None, |
|
extract_pred_after_decode: bool = False, |
|
batch_padding: bool = False, |
|
pad_token_id: Optional[int] = None, |
|
mode: str = 'none', |
|
use_fastchat_template: bool = False, |
|
end_str: Optional[str] = None): |
|
super().__init__(path=path, |
|
max_seq_len=max_seq_len, |
|
tokenizer_only=tokenizer_only, |
|
meta_template=meta_template) |
|
if hf_cache_dir is None: |
|
hf_cache_dir = os.getenv('HF_MODEL_HUB', None) |
|
self.logger = get_logger() |
|
self.pad_token_id = pad_token_id |
|
assert mode in ['none', 'mid'] |
|
self.mode = mode |
|
self._load_tokenizer(path=path, |
|
tokenizer_path=tokenizer_path, |
|
tokenizer_kwargs=tokenizer_kwargs) |
|
self.batch_padding = batch_padding |
|
self.extract_pred_after_decode = extract_pred_after_decode |
|
if not tokenizer_only: |
|
self._load_model(path=path, |
|
model_kwargs=model_kwargs, |
|
peft_path=peft_path) |
|
self.generation_kwargs = generation_kwargs |
|
self.use_fastchat_template = use_fastchat_template |
|
self.end_str = end_str |
|
|
|
def _load_tokenizer(self, path: str, tokenizer_path: Optional[str], |
|
tokenizer_kwargs: dict): |
|
from transformers import AutoTokenizer |
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
tokenizer_path if tokenizer_path else path, **tokenizer_kwargs) |
|
|
|
|
|
if self.pad_token_id is not None: |
|
if self.pad_token_id < 0: |
|
self.pad_token_id += self.tokenizer.vocab_size |
|
if self.tokenizer.pad_token_id is None: |
|
self.logger.debug(f'Using {self.pad_token_id} as pad_token_id') |
|
elif self.tokenizer.pad_token_id != self.pad_token_id: |
|
self.logger.warning( |
|
'pad_token_id is not consistent with the tokenizer. Using ' |
|
f'{self.pad_token_id} as pad_token_id') |
|
self.tokenizer.pad_token_id = self.pad_token_id |
|
elif self.tokenizer.pad_token_id is None: |
|
self.logger.warning('pad_token_id is not set for the tokenizer.') |
|
if self.tokenizer.eos_token is not None: |
|
self.logger.warning( |
|
f'Using eos_token_id {self.tokenizer.eos_token} ' |
|
'as pad_token_id.') |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
else: |
|
from transformers.generation import GenerationConfig |
|
gcfg = GenerationConfig.from_pretrained(path) |
|
|
|
if gcfg.pad_token_id is not None: |
|
self.logger.warning( |
|
f'Using pad_token_id {gcfg.pad_token_id} ' |
|
'as pad_token_id.') |
|
self.tokenizer.pad_token_id = gcfg.pad_token_id |
|
else: |
|
raise ValueError( |
|
'pad_token_id is not set for this tokenizer. Try to ' |
|
'set pad_token_id via passing ' |
|
'`pad_token_id={PAD_TOKEN_ID}` in model_cfg.') |
|
|
|
|
|
if 'decapoda-research/llama' in path or \ |
|
(tokenizer_path and |
|
'decapoda-research/llama' in tokenizer_path): |
|
self.logger.warning('We set new pad_token_id for LLaMA model') |
|
|
|
|
|
self.tokenizer.bos_token = '<s>' |
|
self.tokenizer.eos_token = '</s>' |
|
self.tokenizer.pad_token_id = 0 |
|
|
|
def _set_model_kwargs_torch_dtype(self, model_kwargs): |
|
if 'torch_dtype' not in model_kwargs: |
|
torch_dtype = torch.float16 |
|
else: |
|
torch_dtype = { |
|
'torch.float16': torch.float16, |
|
'torch.bfloat16': torch.bfloat16, |
|
'torch.float': torch.float, |
|
'auto': 'auto', |
|
'None': None |
|
}.get(model_kwargs['torch_dtype']) |
|
self.logger.debug(f'HF using torch_dtype: {torch_dtype}') |
|
if torch_dtype is not None: |
|
model_kwargs['torch_dtype'] = torch_dtype |
|
|
|
def _load_model(self, |
|
path: str, |
|
model_kwargs: dict, |
|
peft_path: Optional[str] = None): |
|
from transformers import AutoModel, AutoModelForCausalLM |
|
|
|
self._set_model_kwargs_torch_dtype(model_kwargs) |
|
try: |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
path, **model_kwargs) |
|
except ValueError: |
|
self.model = AutoModel.from_pretrained(path, **model_kwargs) |
|
|
|
if peft_path is not None: |
|
from peft import PeftModel |
|
self.model = PeftModel.from_pretrained(self.model, |
|
peft_path, |
|
is_trainable=False) |
|
self.model.eval() |
|
self.model.generation_config.do_sample = False |
|
|
|
|
|
if 'decapoda-research/llama' in path: |
|
self.model.config.bos_token_id = 1 |
|
self.model.config.eos_token_id = 2 |
|
self.model.config.pad_token_id = self.tokenizer.pad_token_id |
|
|
|
def generate(self, |
|
inputs: List[str], |
|
max_out_len: int, |
|
min_out_len: Optional[int] = None, |
|
stopping_criteria: List[str] = [], |
|
**kwargs) -> List[str]: |
|
"""Generate results given a list of inputs. |
|
|
|
Args: |
|
inputs (List[str]): A list of strings. |
|
max_out_len (int): The maximum length of the output. |
|
min_out_len (Optional[int]): The minimum length of the output. |
|
|
|
Returns: |
|
List[str]: A list of generated strings. |
|
""" |
|
generation_kwargs = kwargs.copy() |
|
generation_kwargs.update(self.generation_kwargs) |
|
if self.batch_padding and len(inputs) > 1: |
|
return self._batch_generate(inputs=inputs, |
|
max_out_len=max_out_len, |
|
min_out_len=min_out_len, |
|
stopping_criteria=stopping_criteria, |
|
**generation_kwargs) |
|
else: |
|
return sum( |
|
(self._single_generate(inputs=[input_], |
|
max_out_len=max_out_len, |
|
min_out_len=min_out_len, |
|
stopping_criteria=stopping_criteria, |
|
**generation_kwargs) |
|
for input_ in inputs), []) |
|
|
|
def _batch_generate(self, |
|
inputs: List[str], |
|
max_out_len: int, |
|
min_out_len: Optional[int] = None, |
|
stopping_criteria: List[str] = [], |
|
**kwargs) -> List[str]: |
|
"""Support for batch prompts inference. |
|
|
|
Args: |
|
inputs (List[str]): A list of strings. |
|
max_out_len (int): The maximum length of the output. |
|
|
|
Returns: |
|
List[str]: A list of generated strings. |
|
""" |
|
if self.extract_pred_after_decode: |
|
prompt_lens = [len(input_) for input_ in inputs] |
|
|
|
if self.use_fastchat_template: |
|
try: |
|
from fastchat.model import get_conversation_template |
|
except ModuleNotFoundError: |
|
raise ModuleNotFoundError( |
|
'Fastchat is not implemented. You can use ' |
|
'\'pip install "fschat[model_worker,webui]"\' ' |
|
'to implement fastchat.') |
|
for i in range(len(inputs)): |
|
conv = get_conversation_template('vicuna') |
|
conv.append_message(conv.roles[0], inputs[i]) |
|
conv.append_message(conv.roles[1], None) |
|
inputs[i] = conv.get_prompt() |
|
|
|
|
|
tokens = self.tokenizer.batch_encode_plus(inputs, |
|
padding=True, |
|
truncation=True, |
|
max_length=self.max_seq_len - |
|
max_out_len) |
|
tokens = { |
|
k: torch.tensor(np.array(tokens[k]), device=self.model.device) |
|
for k in tokens if k in ['input_ids', 'attention_mask'] |
|
} |
|
|
|
if stopping_criteria: |
|
|
|
if self.tokenizer.eos_token is not None: |
|
stopping_criteria = stopping_criteria + [ |
|
self.tokenizer.eos_token |
|
] |
|
stopping_criteria = transformers.StoppingCriteriaList([ |
|
*[ |
|
MultiTokenEOSCriteria(sequence, self.tokenizer, |
|
tokens['input_ids'].shape[0]) |
|
for sequence in stopping_criteria |
|
], |
|
]) |
|
kwargs['stopping_criteria'] = stopping_criteria |
|
|
|
if min_out_len is not None: |
|
kwargs['min_new_tokens'] = min_out_len |
|
|
|
|
|
outputs = self.model.generate(**tokens, |
|
max_new_tokens=max_out_len, |
|
**kwargs) |
|
|
|
if not self.extract_pred_after_decode: |
|
outputs = outputs[:, tokens['input_ids'].shape[1]:] |
|
|
|
decodeds = self.tokenizer.batch_decode(outputs, |
|
skip_special_tokens=True) |
|
|
|
if self.extract_pred_after_decode: |
|
decodeds = [ |
|
token[len_:] for token, len_ in zip(decodeds, prompt_lens) |
|
] |
|
|
|
if self.end_str: |
|
decodeds = [token.split(self.end_str)[0] for token in decodeds] |
|
return decodeds |
|
|
|
def _single_generate(self, |
|
inputs: List[str], |
|
max_out_len: int, |
|
min_out_len: Optional[int] = None, |
|
stopping_criteria: List[str] = [], |
|
**kwargs) -> List[str]: |
|
"""Support for single prompt inference. |
|
|
|
Args: |
|
inputs (List[str]): A list of strings. |
|
max_out_len (int): The maximum length of the output. |
|
|
|
Returns: |
|
List[str]: A list of generated strings. |
|
""" |
|
if self.extract_pred_after_decode: |
|
prompt_lens = [len(input_) for input_ in inputs] |
|
|
|
if self.use_fastchat_template: |
|
try: |
|
from fastchat.model import get_conversation_template |
|
except ModuleNotFoundError: |
|
raise ModuleNotFoundError( |
|
'Fastchat is not implemented. You can use ' |
|
'\'pip install "fschat[model_worker,webui]"\' ' |
|
'to implement fastchat.') |
|
conv = get_conversation_template('vicuna') |
|
conv.append_message(conv.roles[0], inputs[0]) |
|
conv.append_message(conv.roles[1], None) |
|
inputs = [conv.get_prompt()] |
|
|
|
if self.mode == 'mid': |
|
input_ids = self.tokenizer(inputs, truncation=False)['input_ids'] |
|
input_ids = torch.tensor(input_ids, device=self.model.device) |
|
if len(input_ids[0]) > self.max_seq_len - max_out_len: |
|
half = int((self.max_seq_len - max_out_len) / 2) |
|
inputs = [ |
|
self.tokenizer.decode(input_ids[0][:half], |
|
skip_special_tokens=True) + |
|
self.tokenizer.decode(input_ids[0][-half:], |
|
skip_special_tokens=True) |
|
] |
|
|
|
input_ids = self.tokenizer(inputs, |
|
truncation=True, |
|
max_length=self.max_seq_len - |
|
max_out_len)['input_ids'] |
|
input_ids = torch.tensor(input_ids, device=self.model.device) |
|
if stopping_criteria: |
|
|
|
if self.tokenizer.eos_token is not None: |
|
stopping_criteria = stopping_criteria + [ |
|
self.tokenizer.eos_token |
|
] |
|
stopping_criteria = transformers.StoppingCriteriaList([ |
|
*[ |
|
MultiTokenEOSCriteria(sequence, self.tokenizer, |
|
input_ids.shape[0]) |
|
for sequence in stopping_criteria |
|
], |
|
]) |
|
kwargs['stopping_criteria'] = stopping_criteria |
|
|
|
if min_out_len is not None: |
|
kwargs['min_new_tokens'] = min_out_len |
|
|
|
|
|
|
|
outputs = self.model.generate(input_ids=input_ids, |
|
max_new_tokens=max_out_len, |
|
**kwargs) |
|
|
|
if not self.extract_pred_after_decode: |
|
outputs = outputs[:, input_ids.shape[1]:] |
|
|
|
decodeds = self.tokenizer.batch_decode(outputs, |
|
skip_special_tokens=True) |
|
|
|
if self.extract_pred_after_decode: |
|
decodeds = [ |
|
token[len_:] for token, len_ in zip(decodeds, prompt_lens) |
|
] |
|
|
|
if self.end_str: |
|
decodeds = [token.split(self.end_str)[0] for token in decodeds] |
|
return decodeds |
|
|
|
def get_logits(self, inputs: List[str]): |
|
|
|
if self.batch_padding and len(inputs) > 1: |
|
|
|
tokens = self.tokenizer(inputs, |
|
padding=True, |
|
truncation=True, |
|
max_length=self.max_seq_len) |
|
|
|
tokens = { |
|
k: torch.tensor(np.array(tokens[k]), device=self.model.device) |
|
for k in tokens if k in ['input_ids', 'attention_mask'] |
|
} |
|
outputs = self.model(**tokens) |
|
|
|
else: |
|
input_ids = self.tokenizer( |
|
inputs, |
|
padding=False, |
|
truncation=True, |
|
max_length=self.max_seq_len)['input_ids'] |
|
input_ids = torch.tensor(input_ids, device=self.model.device) |
|
tokens = {'input_ids': input_ids} |
|
|
|
outputs = self.model(input_ids) |
|
return outputs[0], {'tokens': tokens} |
|
|
|
def get_ppl(self, |
|
inputs: List[str], |
|
mask_length: Optional[List[int]] = None) -> List[float]: |
|
"""Get perplexity scores given a list of inputs. |
|
|
|
Args: |
|
inputs (List[str]): A list of strings. |
|
mask_length (Optional[List[int]]): A list of mask lengths. If |
|
provided, the perplexity scores will be calculated with the |
|
first mask_length[i] tokens masked out. It's okay to skip |
|
its implementation if advanced features in PPLInfernecer is |
|
not needed. |
|
|
|
Returns: |
|
List[float]: A list of perplexity scores. |
|
""" |
|
|
|
if self.batch_padding and len(inputs) > 1: |
|
assert self.tokenizer.pad_token |
|
return self._get_ppl(inputs, mask_length=mask_length) |
|
else: |
|
return np.concatenate([ |
|
self._get_ppl(inputs=[text], mask_length=mask_length) |
|
for text in inputs |
|
]) |
|
|
|
def _get_ppl(self, |
|
inputs: List[str], |
|
mask_length: Optional[List[int]] = None) -> List[float]: |
|
"""Get perplexity scores given a list of inputs. |
|
|
|
Args: |
|
inputs (List[str]): A list of strings. |
|
mask_length (Optional[List[int]]): A list of mask lengths. If |
|
provided, the perplexity scores will be calculated with the |
|
first mask_length[i] tokens masked out. It's okay to skip |
|
its implementation if advanced features in PPLInfernecer is |
|
not needed. |
|
|
|
Returns: |
|
List[float]: A list of perplexity scores. |
|
""" |
|
|
|
outputs, inputs = self.get_logits(inputs) |
|
shift_logits = outputs[..., :-1, :].contiguous().float() |
|
|
|
shift_labels = inputs['tokens']['input_ids'][..., 1:].contiguous() |
|
|
|
loss_fct = torch.nn.CrossEntropyLoss( |
|
reduction='none', ignore_index=self.tokenizer.pad_token_id) |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), |
|
shift_labels.view(-1)).view(shift_labels.size()) |
|
|
|
if mask_length is not None: |
|
mask = torch.zeros_like(shift_labels) |
|
for i in range(len(mask)): |
|
for j in range(mask_length[i] - 1, len(mask[i])): |
|
mask[i][j] = 1 |
|
loss = loss * mask |
|
|
|
lens = (inputs['tokens']['input_ids'] != |
|
self.tokenizer.pad_token_id).sum(-1).cpu().numpy() |
|
if mask_length is not None: |
|
lens -= np.array(mask_length) |
|
ce_loss = loss.float().sum(-1).cpu().detach().numpy() / lens |
|
return ce_loss |
|
|
|
def get_loglikelihood( |
|
self, |
|
inputs: List[str], |
|
conts: List[str], |
|
mask_length: Optional[List[int]] = None) -> List[float]: |
|
"""Get loglikelihood scores given a list of inputs. |
|
|
|
Args: |
|
inputs (List[str]): A list of strings. |
|
conts (List[str]): A list of strings: slices after the space. |
|
NOT SUPPORT mask_length YET! |
|
mask_length (Optional[List[int]]): A list of mask lengths. If |
|
provided, the perplexity scores will be calculated with the |
|
first mask_length[i] tokens masked out. It's okay to skip |
|
its implementation if advanced features in PPLInfernecer is |
|
not needed. |
|
|
|
Returns: |
|
List[float]: A list of loglikelihood scores. |
|
""" |
|
assert mask_length is None, 'Not support mask_length yet.' |
|
if self.batch_padding and len(inputs) > 1: |
|
assert self.tokenizer.pad_token |
|
return self._get_loglikelihood(inputs, conts) |
|
else: |
|
return np.concatenate([ |
|
self._get_loglikelihood(inputs=[inputs[idx]], |
|
conts=[conts[idx]]) |
|
for idx in range(len(inputs)) |
|
]) |
|
|
|
def _get_loglikelihood(self, inputs: str, conts: str) -> float: |
|
"""Get loglikelihood scores given input string and continuation string. |
|
|
|
Args: |
|
inputs (str): string. |
|
conts (str): strings: slices after the space. |
|
Returns: |
|
float: loglikelihood scores. |
|
""" |
|
input_tokenizer_out = self.tokenizer(inputs, |
|
padding=True, |
|
truncation=False, |
|
return_length=True, |
|
return_tensors='pt').to( |
|
self.model.device) |
|
|
|
input_ids = input_tokenizer_out['input_ids'][:, :self.max_seq_len] |
|
input_length = input_tokenizer_out['length'] |
|
context_ids = [ |
|
self.tokenizer(inputs[i].replace(conts[i], ''), |
|
padding=False, |
|
truncation=True, |
|
max_length=self.max_seq_len)['input_ids'] |
|
for i in range(len(inputs)) |
|
] |
|
|
|
outputs = self.model(input_ids)['logits'] |
|
outputs = torch.nn.functional.log_softmax(outputs, dim=-1) |
|
|
|
answer = np.zeros(len(inputs)) |
|
for i in range(len(inputs)): |
|
if self.tokenizer.padding_side == 'right': |
|
cont_ids = input_ids[i, len(context_ids[i]):input_length[i]] |
|
logits = outputs[i, |
|
len(context_ids[i]) - 1:input_length[i] - |
|
1, :] |
|
else: |
|
cont_ids = input_ids[i, len(context_ids[i]) - input_length[i]:] |
|
logits = outputs[i, |
|
len(context_ids[i]) - input_length[i] - 1:-1] |
|
|
|
logits_gather = torch.gather( |
|
logits.unsqueeze(0), 2, |
|
cont_ids.unsqueeze(0).unsqueeze(-1)) |
|
|
|
answer[i] = float(logits_gather.detach().cpu().sum()) |
|
return answer |
|
|
|
def get_mink_percent(self, inputs: List[str], k: int = 20) -> List[float]: |
|
"""https://swj0419.github.io/detect-pretrain.github.io/""" |
|
|
|
if self.batch_padding and len(inputs) > 1: |
|
assert self.tokenizer.pad_token |
|
return self._get_mink_percent(inputs, k=k) |
|
else: |
|
return np.concatenate([ |
|
self._get_mink_percent(inputs=[text], k=k) for text in inputs |
|
]) |
|
|
|
def _get_mink_percent(self, inputs: List[str], k: int = 20) -> List[float]: |
|
outputs, inputs = self.get_logits(inputs) |
|
shift_logits = outputs[:, :-1, :].contiguous().float() |
|
shift_labels = inputs['tokens']['input_ids'][:, 1:].contiguous() |
|
|
|
loss_fct = torch.nn.CrossEntropyLoss( |
|
reduction='none', ignore_index=self.tokenizer.pad_token_id) |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), |
|
shift_labels.view(-1)).view(shift_labels.size()) |
|
lens = (inputs['tokens']['input_ids'] != |
|
self.tokenizer.pad_token_id).sum(-1).cpu().numpy() |
|
mink_percent = [] |
|
for nloss, nlen in zip(loss, lens): |
|
nlen = int(nlen) |
|
minklen = max(nlen * k // 100, 1) |
|
nloss = torch.topk(loss[-nlen:], minklen, dim=-1)[0] |
|
nloss = -nloss.float().mean().cpu().detach().numpy() |
|
mink_percent.append(nloss) |
|
return np.array(mink_percent) |
|
|
|
def get_token_len(self, prompt: str) -> int: |
|
"""Get lengths of the tokenized strings. |
|
|
|
Args: |
|
prompt (str): Input string. |
|
|
|
Returns: |
|
int: Length of the input tokens |
|
""" |
|
return len(self.tokenizer.encode(prompt)) |
|
|
|
|
|
@MODELS.register_module() |
|
class HuggingFaceCausalLM(HuggingFace): |
|
"""Model wrapper around HuggingFace CausalLM. |
|
|
|
Args: |
|
path (str): The name or path to HuggingFace's model. |
|
hf_cache_dir: Set the cache dir to HF model cache dir. If None, it will |
|
use the env variable HF_MODEL_HUB. Defaults to None. |
|
max_seq_len (int): The maximum length of the input sequence. Defaults |
|
to 2048. |
|
tokenizer_path (str): The path to the tokenizer. Defaults to None. |
|
tokenizer_kwargs (dict): Keyword arguments for the tokenizer. |
|
Defaults to {}. |
|
peft_path (str, optional): The name or path to the HuggingFace's PEFT |
|
model. If None, the original model will not be converted to PEFT. |
|
Defaults to None. |
|
tokenizer_only (bool): If True, only the tokenizer will be initialized. |
|
Defaults to False. |
|
model_kwargs (dict): Keyword arguments for the model, used in loader. |
|
Defaults to dict(device_map='auto'). |
|
meta_template (Dict, optional): The model's meta prompt |
|
template if needed, in case the requirement of injecting or |
|
wrapping of any meta instructions. |
|
batch_padding (bool): If False, inference with be performed in for-loop |
|
without batch padding. |
|
""" |
|
|
|
def _load_model(self, |
|
path: str, |
|
model_kwargs: dict, |
|
peft_path: Optional[str] = None): |
|
from transformers import AutoModelForCausalLM |
|
|
|
self._set_model_kwargs_torch_dtype(model_kwargs) |
|
self.model = AutoModelForCausalLM.from_pretrained(path, **model_kwargs) |
|
if peft_path is not None: |
|
from peft import PeftModel |
|
self.model = PeftModel.from_pretrained(self.model, |
|
peft_path, |
|
is_trainable=False) |
|
self.model.eval() |
|
self.model.generation_config.do_sample = False |
|
|
|
|
|
class HuggingFaceChatGLM3(HuggingFace): |
|
"""Model wrapper around HuggingFace's ChatGLM3. Details available in |
|
`https://huggingface.co/THUDM/chatglm3-6b`. |
|
|
|
model.chat() is used for inference. |
|
""" |
|
|
|
def __init__(self, |
|
path: str, |
|
hf_cache_dir: Optional[str] = None, |
|
max_seq_len: int = 2048, |
|
tokenizer_path: Optional[str] = None, |
|
tokenizer_kwargs: dict = dict(), |
|
peft_path: Optional[str] = None, |
|
tokenizer_only: bool = False, |
|
model_kwargs: dict = dict(device_map='auto'), |
|
generation_kwargs: dict = dict(), |
|
meta_template: Optional[Dict] = None, |
|
extract_pred_after_decode: bool = False, |
|
batch_padding: bool = False, |
|
pad_token_id: Optional[int] = None, |
|
mode: str = 'none', |
|
num_extra_tokens: int = 50): |
|
super().__init__(path=path, |
|
hf_cache_dir=hf_cache_dir, |
|
max_seq_len=max_seq_len, |
|
tokenizer_path=tokenizer_path, |
|
tokenizer_kwargs=tokenizer_kwargs, |
|
peft_path=peft_path, |
|
tokenizer_only=tokenizer_only, |
|
generation_kwargs=generation_kwargs, |
|
model_kwargs=model_kwargs, |
|
meta_template=meta_template, |
|
extract_pred_after_decode=extract_pred_after_decode, |
|
batch_padding=batch_padding, |
|
pad_token_id=pad_token_id, |
|
mode=mode) |
|
self.template_parser = APITemplateParser(meta_template) |
|
|
|
self.num_extra_tokens = num_extra_tokens |
|
|
|
def generate(self, |
|
inputs: List[str or PromptList], |
|
max_out_len: int = 512, |
|
skip_overlength=False, |
|
**kwargs) -> str: |
|
"""Generate response from input prompt. |
|
|
|
Args: |
|
inputs (list): input prompt |
|
max_out_len (int): max output length |
|
""" |
|
generation_kwargs = kwargs.copy() |
|
generation_kwargs.update(self.generation_kwargs) |
|
|
|
responses = [] |
|
for _input in inputs: |
|
assert isinstance(_input, (str, PromptList)) |
|
if isinstance(_input, str): |
|
history = [{'role': 'user', 'content': _input}] |
|
else: |
|
history = [] |
|
for item in _input: |
|
msg = { |
|
'content': item['prompt'], |
|
'role': { |
|
'HUMAN': 'user', |
|
'BOT': 'assistant', |
|
'SYSTEM': 'system', |
|
}[item['role'].upper()] |
|
} |
|
history.append(msg) |
|
user_content = history[-1]['content'] |
|
history = history[:-1] |
|
|
|
if skip_overlength: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
len_user_content = len(self.tokenizer.encode(user_content)) |
|
if len_user_content > 8192: |
|
responses.append('') |
|
continue |
|
|
|
response, history = self.model.chat(self.tokenizer, |
|
user_content, |
|
history=history, |
|
max_new_tokens=max_out_len, |
|
**generation_kwargs) |
|
|
|
if isinstance(response, dict): |
|
response = response.get('content', '') |
|
responses.append(response) |
|
return responses |
|
|
|
def get_token_len(self, prompt: str) -> int: |
|
return len(self.tokenizer.encode(prompt)) + self.num_extra_tokens |
|
|