|
import argparse |
|
import os.path as osp |
|
import random |
|
import time |
|
from shutil import which |
|
from typing import Any |
|
|
|
from mmengine.config import Config, ConfigDict |
|
from mmengine.utils import mkdir_or_exist |
|
|
|
from opencompass.registry import (ICL_INFERENCERS, ICL_PROMPT_TEMPLATES, |
|
ICL_RETRIEVERS, TASKS) |
|
from opencompass.tasks.base import BaseTask |
|
from opencompass.utils import (build_dataset_from_cfg, build_model_from_cfg, |
|
get_infer_output_path, get_logger, |
|
task_abbr_from_cfg) |
|
|
|
|
|
@TASKS.register_module(force=(__name__ == '__main__')) |
|
class OpenICLInferTask(BaseTask): |
|
"""OpenICL Inference Task. |
|
|
|
This task is used to run the inference process. |
|
""" |
|
|
|
name_prefix = 'OpenICLInfer' |
|
log_subdir = 'logs/infer' |
|
output_subdir = 'predictions' |
|
|
|
def __init__(self, cfg: ConfigDict): |
|
super().__init__(cfg) |
|
run_cfg = self.model_cfgs[0].get('run_cfg', {}) |
|
self.num_gpus = run_cfg.get('num_gpus', 0) |
|
self.num_procs = run_cfg.get('num_procs', 1) |
|
self.logger = get_logger() |
|
|
|
def get_command(self, cfg_path, template): |
|
"""Get the command template for the task. |
|
|
|
Args: |
|
cfg_path (str): The path to the config file of the task. |
|
template (str): The template which have '{task_cmd}' to format |
|
the command. |
|
""" |
|
script_path = __file__ |
|
has_vllm = ('VLLM' in str(self.model_cfgs[0].get('type', ''))) or \ |
|
'VLLM' in str(self.model_cfgs[0].get('llm', {}).get('type', '')) |
|
if self.num_gpus > 0 and not has_vllm: |
|
port = random.randint(12000, 32000) |
|
command = (f'torchrun --master_port={port} ' |
|
f'--nproc_per_node {self.num_procs} ' |
|
f'{script_path} {cfg_path}') |
|
else: |
|
python = 'python3' if which('python3') else 'python' |
|
command = f'{python} {script_path} {cfg_path}' |
|
|
|
return template.format(task_cmd=command) |
|
|
|
def run(self): |
|
self.logger.info(f'Task {task_abbr_from_cfg(self.cfg)}') |
|
for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs): |
|
self.max_out_len = model_cfg.get('max_out_len', None) |
|
self.batch_size = model_cfg.get('batch_size', None) |
|
self.min_out_len = model_cfg.get('min_out_len', None) |
|
self.model = build_model_from_cfg(model_cfg) |
|
|
|
for dataset_cfg in dataset_cfgs: |
|
self.model_cfg = model_cfg |
|
self.dataset_cfg = dataset_cfg |
|
self.infer_cfg = self.dataset_cfg['infer_cfg'] |
|
self.dataset = build_dataset_from_cfg(self.dataset_cfg) |
|
self.sub_cfg = { |
|
'models': [self.model_cfg], |
|
'datasets': [[self.dataset_cfg]], |
|
} |
|
out_path = get_infer_output_path( |
|
self.model_cfg, self.dataset_cfg, |
|
osp.join(self.work_dir, 'predictions')) |
|
if osp.exists(out_path): |
|
continue |
|
self._inference() |
|
|
|
def _inference(self): |
|
self.logger.info( |
|
f'Start inferencing {task_abbr_from_cfg(self.sub_cfg)}') |
|
|
|
assert hasattr(self.infer_cfg, 'ice_template') or hasattr(self.infer_cfg, 'prompt_template'), \ |
|
'Both ice_template and prompt_template cannot be None simultaneously.' |
|
if hasattr(self.infer_cfg, 'ice_template'): |
|
ice_template = ICL_PROMPT_TEMPLATES.build( |
|
self.infer_cfg['ice_template']) |
|
|
|
if hasattr(self.infer_cfg, 'prompt_template'): |
|
prompt_template = ICL_PROMPT_TEMPLATES.build( |
|
self.infer_cfg['prompt_template']) |
|
|
|
retriever_cfg = self.infer_cfg['retriever'].copy() |
|
retriever_cfg['dataset'] = self.dataset |
|
retriever = ICL_RETRIEVERS.build(retriever_cfg) |
|
|
|
|
|
inferencer_cfg = self.infer_cfg['inferencer'] |
|
inferencer_cfg['model'] = self.model |
|
self._set_default_value(inferencer_cfg, 'max_out_len', |
|
self.max_out_len) |
|
self._set_default_value(inferencer_cfg, 'min_out_len', |
|
self.min_out_len) |
|
self._set_default_value(inferencer_cfg, 'batch_size', self.batch_size) |
|
inferencer_cfg['max_seq_len'] = self.model_cfg.get('max_seq_len') |
|
inferencer = ICL_INFERENCERS.build(inferencer_cfg) |
|
|
|
out_path = get_infer_output_path( |
|
self.model_cfg, self.dataset_cfg, |
|
osp.join(self.work_dir, 'predictions')) |
|
out_dir, out_file = osp.split(out_path) |
|
mkdir_or_exist(out_dir) |
|
|
|
if hasattr(self.infer_cfg, 'prompt_template') and \ |
|
hasattr(self.infer_cfg, 'ice_template'): |
|
inferencer.inference(retriever, |
|
ice_template=ice_template, |
|
prompt_template=prompt_template, |
|
output_json_filepath=out_dir, |
|
output_json_filename=out_file) |
|
elif hasattr(self.infer_cfg, 'prompt_template'): |
|
inferencer.inference(retriever, |
|
prompt_template=prompt_template, |
|
output_json_filepath=out_dir, |
|
output_json_filename=out_file) |
|
else: |
|
inferencer.inference(retriever, |
|
ice_template=ice_template, |
|
output_json_filepath=out_dir, |
|
output_json_filename=out_file) |
|
|
|
def _set_default_value(self, cfg: ConfigDict, key: str, value: Any): |
|
if key not in cfg: |
|
cfg[key] = value |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Model Inferencer') |
|
parser.add_argument('config', help='Config file path') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
cfg = Config.fromfile(args.config) |
|
start_time = time.time() |
|
inferencer = OpenICLInferTask(cfg) |
|
inferencer.run() |
|
end_time = time.time() |
|
get_logger().info(f'time elapsed: {end_time - start_time:.2f}s') |
|
|