cr-model / README.md
TwT-6's picture
Adding Evaluation Results (#1)
956faec verified
metadata
license: cc-by-nc-4.0
model-index:
  - name: cr-model
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 57.85
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 81.66
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 68.73
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 58.2
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 76.24
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65.88
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model
          name: Open LLM Leaderboard

My model is a state-of-the-art language processing AI designed to understand and generate human-like text. It leverages deep learning algorithms to engage in a wide range of language tasks, providing users with information, recommendations, and even casual conversation. With a broad knowledge base and nuanced understanding of context, my capabilities enable me to assist with various inquiries and perform complex language-based tasks effectively.

How to use?

from transformers import AutoModelForCausalLM, AutoTokenizer

from transformers.generation import GenerationConfig

import torch

model = AutoModelForCausalLM.from_pretrained( 'TwT-6/cr-model', attn_implementation="flash_attention_2", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto").eval()

tokenizer = AutoTokenizer.from_pretrained('TwT-6/cr-model', trust_remote_code=True)

inputs = '你好'

inputs = f'<|omni_start|>### User:\n{inputs}\n\n### Assistant:\n'

inputs = tokenizer(inputs, return_tensors="pt").to('cuda')

output_ids = model.generate(**inputs)[0].cpu()

output = tokenizer.decode(output_ids[inputs.input_ids.shape[-1]:])

print(output)

你好!很高兴见到你。有什么我可以帮助你的吗

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 68.09
AI2 Reasoning Challenge (25-Shot) 57.85
HellaSwag (10-Shot) 81.66
MMLU (5-Shot) 68.73
TruthfulQA (0-shot) 58.20
Winogrande (5-shot) 76.24
GSM8k (5-shot) 65.88