|
--- |
|
license: cc-by-nc-4.0 |
|
model-index: |
|
- name: cr-model |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 57.85 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 81.66 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 68.73 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 58.2 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 76.24 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 65.88 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TwT-6/cr-model |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
My model is a state-of-the-art language processing AI designed to understand and generate human-like text. It leverages deep learning algorithms to engage in a wide range of language tasks, providing users with information, recommendations, and even casual conversation. With a broad knowledge base and nuanced understanding of context, my capabilities enable me to assist with various inquiries and perform complex language-based tasks effectively. |
|
|
|
How to use? |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
from transformers.generation import GenerationConfig |
|
|
|
import torch |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
'TwT-6/cr-model', |
|
attn_implementation="flash_attention_2", |
|
trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto").eval() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('TwT-6/cr-model', trust_remote_code=True) |
|
|
|
inputs = '你好' |
|
|
|
inputs = f'<|omni_start|>### User:\n{inputs}\n\n### Assistant:\n' |
|
|
|
inputs = tokenizer(inputs, return_tensors="pt").to('cuda') |
|
|
|
output_ids = model.generate(**inputs)[0].cpu() |
|
|
|
output = tokenizer.decode(output_ids[inputs.input_ids.shape[-1]:]) |
|
|
|
print(output) |
|
|
|
## 你好!很高兴见到你。有什么我可以帮助你的吗 |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TwT-6__cr-model) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |68.09| |
|
|AI2 Reasoning Challenge (25-Shot)|57.85| |
|
|HellaSwag (10-Shot) |81.66| |
|
|MMLU (5-Shot) |68.73| |
|
|TruthfulQA (0-shot) |58.20| |
|
|Winogrande (5-shot) |76.24| |
|
|GSM8k (5-shot) |65.88| |
|
|
|
|