Vexemous's picture
Update README.md
1d5013b verified
|
raw
history blame
2.3 kB
metadata
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_trainer
datasets:
  - xsum
metrics:
  - rouge
model-index:
  - name: t5-small-finetuned-xsum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: xsum
          type: xsum
          config: default
          split: train[:10%]
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 27.0616
pipeline_tag: summarization

t5-small-finetuned-xsum

This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5622
  • Rouge1: 27.0616
  • Rouge2: 6.8574
  • Rougel: 21.1087
  • Rougelsum: 21.1175
  • Gen Len: 18.8246

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.8879 1.0 1148 2.6353 25.4786 5.8199 19.7404 19.7497 18.8089
2.8178 2.0 2296 2.5951 26.2963 6.4255 20.5395 20.5304 18.8084
2.7831 3.0 3444 2.5741 26.7181 6.7174 20.8888 20.8914 18.806
2.7572 4.0 4592 2.5647 27.0071 6.8335 21.108 21.1149 18.8202
2.7476 5.0 5740 2.5622 27.0616 6.8574 21.1087 21.1175 18.8246

Framework versions

  • Transformers 4.40.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.19.0
  • Tokenizers 0.19.1