|
--- |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- xsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-small-finetuned-xsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: xsum |
|
type: xsum |
|
config: default |
|
split: train[:10%] |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 27.0616 |
|
pipeline_tag: summarization |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-finetuned-xsum |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.5622 |
|
- Rouge1: 27.0616 |
|
- Rouge2: 6.8574 |
|
- Rougel: 21.1087 |
|
- Rougelsum: 21.1175 |
|
- Gen Len: 18.8246 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| 2.8879 | 1.0 | 1148 | 2.6353 | 25.4786 | 5.8199 | 19.7404 | 19.7497 | 18.8089 | |
|
| 2.8178 | 2.0 | 2296 | 2.5951 | 26.2963 | 6.4255 | 20.5395 | 20.5304 | 18.8084 | |
|
| 2.7831 | 3.0 | 3444 | 2.5741 | 26.7181 | 6.7174 | 20.8888 | 20.8914 | 18.806 | |
|
| 2.7572 | 4.0 | 4592 | 2.5647 | 27.0071 | 6.8335 | 21.108 | 21.1149 | 18.8202 | |
|
| 2.7476 | 5.0 | 5740 | 2.5622 | 27.0616 | 6.8574 | 21.1087 | 21.1175 | 18.8246 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |