ViktorDo's picture
End of training
86e92dd
|
raw
history blame
1.92 kB
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: DeBERTa-finetuned-ner-S800
    results: []

DeBERTa-finetuned-ner-S800

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0681
  • Precision: 0.6874
  • Recall: 0.7731
  • F1: 0.7278
  • Accuracy: 0.9771

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 55 0.0748 0.5784 0.6457 0.6102 0.9699
No log 2.0 110 0.0709 0.6174 0.7773 0.6882 0.9750
No log 3.0 165 0.0670 0.6460 0.7899 0.7108 0.9758
No log 4.0 220 0.0628 0.6966 0.7717 0.7322 0.9775
No log 5.0 275 0.0681 0.6874 0.7731 0.7278 0.9771

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3