VitaliiVrublevskyi's picture
update model card README.md
e043c8c
|
raw
history blame
2.24 kB
metadata
base_model: meta-llama/Llama-2-7b-hf
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: Llama-2-7b-hf-finetuned-mrpc-v5
    results: []

Llama-2-7b-hf-finetuned-mrpc-v5

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6070
  • Accuracy: 0.8480
  • F1: 0.8916

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss
0.733 1.0 917 0.6912 0.7974 0.6016
0.6103 2.0 1834 0.7402 0.8339 0.5650
0.508 3.0 2751 0.7525 0.8358 0.5246
0.5354 4.0 3668 0.7794 0.8529 0.5318
0.4246 5.0 4585 0.7843 0.8508 0.5279
0.4295 6.0 5502 0.7966 0.8591 0.5248
0.4473 7.0 6419 0.8162 0.8696 0.5169
0.419 8.0 7336 0.8260 0.8778 0.5552
0.3876 9.0 8253 0.8284 0.8776 0.5514
0.42 10.0 9170 0.5576 0.8407 0.8862
0.3678 11.0 10087 0.6212 0.8480 0.8927
0.3453 12.0 11004 0.6070 0.8480 0.8916

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3