Yassmen's picture
Update README.md
c3ff672 verified
metadata
license: mit
base_model: google/vivit-b-16x2-kinetics400
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: vivit-b-16x2-kinetics400-finetuned-cremad
    results: []

Visualize in Weights & Biases

vivit-b-16x2-kinetics400-finetuned-cremad

This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on CREMA-D dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1824
  • Accuracy: 0.6575
  • F1: 0.6595
  • Recall: 0.6575
  • Precision: 0.6676

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 11906

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
1.54 0.5 5953 1.7615 0.4614 0.4420 0.4614 0.5095
0.7419 1.5 11906 1.1824 0.6575 0.6595 0.6575 0.6676

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1