metadata
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: intent_analysis
results: []
intent_analysis
This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0440
- Accuracy: 0.9943
- Precision: 0.9943
- Recall: 0.9943
- F1: 0.9943
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.2284 | 1.0 | 559 | 0.1132 | 0.9814 | 0.9819 | 0.9815 | 0.9814 |
0.085 | 2.0 | 1118 | 0.1069 | 0.9814 | 0.9818 | 0.9814 | 0.9814 |
0.0599 | 3.0 | 1677 | 0.0752 | 0.99 | 0.9901 | 0.9900 | 0.9900 |
0.0316 | 4.0 | 2236 | 0.0382 | 0.9943 | 0.9943 | 0.9943 | 0.9943 |
0.0068 | 5.0 | 2795 | 0.0440 | 0.9943 | 0.9943 | 0.9943 | 0.9943 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3