ahotrod's picture
Update metadata with huggingface_hub
0b06305
|
raw
history blame
3.67 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - squad_v2
base_model: microsoft/deberta-v3-large
model-index:
  - name: deberta-v3-large-finetuned-squadv2
    results:
      - task:
          type: question-answering
          name: Extractive Question Answering
        dataset:
          name: SQuAD2.0
          type: squad_v2
          split: validation[:11873]
        metrics:
          - type: exact
            value: 88.69704371262529
            name: eval_exact
          - type: f1
            value: 91.51550564529175
            name: eval_f1
          - type: HasAns_exact
            value: 83.70445344129554
            name: HasAns_exact
          - type: HasAns_f1
            value: 89.34945994037624
            name: HasAns_f1
          - type: HasAns_total
            value: 5928
            name: HasAns_total
          - type: NoAns_exact
            value: 93.6753574432296
            name: NoAns_exact
          - type: NoAns_f1
            value: 93.6753574432296
            name: NoAns_f1
          - type: NoAns_total
            value: 5945
            name: NoAns_total

deberta-v3-large-finetuned-squadv2

This model is a version of microsoft/deberta-v3-large fine-tuned on the SQuAD version 2.0 dataset. Fine-tuning & evaluation on a NVIDIA Titan RTX - 24GB GPU took 15 hours.

Results from 2023 ICLR paper, "DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing", by Pengcheng He, et. al.

  • 'EM' : 89.0
  • 'F1' : 91.5

Results calculated with:

metrics = evaluate.load("squad_v2")
squad_v2_metrics = metrics.compute(predictions = formatted_predictions, references = references)

for this fine-tuning:

  • 'exact' : 88.70,
  • 'f1' : 91.52,
  • 'total' : 11873,
  • 'HasAns_exact' : 83.70,
  • 'HasAns_f1' : 89.35,
  • 'HasAns_total' : 5928,
  • 'NoAns_exact' : 93.68,
  • 'NoAns_f1' : 93.68,
  • 'NoAns_total' : 5945,
  • 'best_exact' : 88.70,
  • 'best_exact_thresh' : 0.0,
  • 'best_f1' : 91.52,
  • 'best_f1_thresh' : 0.0}

Model description

For the authors' models, code & detailed information see: https://github.com/microsoft/DeBERTa

Intended uses

Extractive question answering on a given context

Fine-tuning hyperparameters

The following hyperparameters, as suggested by the 2023 ICLR paper noted above, were used during fine-tuning:

  • learning_rate : 1e-05
  • train_batch_size : 8
  • eval_batch_size : 8
  • seed : 42
  • gradient_accumulation_steps : 8
  • total_train_batch_size : 64
  • optimizer : Adam with betas = (0.9, 0.999) and epsilon = 1e-06
  • lr_scheduler_type : linear
  • lr_scheduler_warmup_steps : 1000
  • training_steps : 5200

Framework versions

  • Transformers : 4.35.0.dev0
  • Pytorch : 2.1.0+cu121
  • Datasets : 2.14.5
  • Tokenizers : 0.14.0

System

  • CPU : Intel(R) Core(TM) i9-9900K - 32GB RAM
  • Python version : 3.11.5 [GCC 11.2.0] (64-bit runtime)
  • Python platform : Linux-5.15.0-86-generic-x86_64-with-glibc2.35
  • GPU : NVIDIA TITAN RTX - 24GB Memory
  • CUDA runtime version : 12.1.105
  • Nvidia driver version : 535.113.01

Fine-tuning (Training) results before/after the best model (Step 3620)

Training Loss Epoch Step Validation Loss
0.5323 1.72 3500 0.5860
0.5129 1.73 3520 0.5656
0.5441 1.74 3540 0.5642
0.5624 1.75 3560 0.5873
0.4645 1.76 3580 0.5891
0.5577 1.77 3600 0.5816
0.5199 1.78 3620 0.5579
0.5061 1.79 3640 0.5837
0.484 1.79 3660 0.5721
0.5095 1.8 3680 0.5821
0.5342 1.81 3700 0.5602