kaisugi's picture
initial commit
1671e4f
|
raw
history blame
3.87 kB
metadata
language: ja
license: cc-by-nc-sa-4.0
tags:
  - roberta
  - medical
mask_token: '[MASK]'
widget:
  - text: この患者は[MASK]と診断された。

alabnii/jmedroberta-base-sentencepiece

Model description

This is a Japanese RoBERTa base model pre-trained on academic articles in medical sciences collected by Japan Science and Technology Agency (JST).

This model is released under the Creative Commons 4.0 International License (CC BY-NC-SA 4.0).

Datasets used for pre-training

  • abstracts (train: 1.6GB (10M sentences), validation: 0.2GB (1.3M sentences))
  • abstracts & body texts (train: 0.2GB (1.4M sentences))

How to use

Input text must be converted to full-width characters(全角)in advance.

You can use this model for masked language modeling as follows:

from transformers import AutoModelForMaskedLM, AutoTokenizer

model = AutoModelForMaskedLM.from_pretrained("alabnii/jmedroberta-base-sentencepiece")
model.eval()
tokenizer = AutoTokenizer.from_pretrained("alabnii/jmedroberta-base-sentencepiece")

texts = ['この患者は[MASK]と診断された。']
inputs = tokenizer.batch_encode_plus(texts, return_tensors='pt')
outputs = model(**inputs)
tokenizer.convert_ids_to_tokens(outputs.logits[0][1:-1].argmax(axis=-1))
# ['▁この', '患者は', 'AML', '▁', 'と診断された', '。']

Alternatively, you can employ Fill-mask pipeline.

from transformers import pipeline
fill = pipeline("fill-mask", model="alabnii/jmedroberta-base-sentencepiece", top_k=10)
fill("この患者は[MASK]と診断された。")
#[{'score': 0.04239409416913986,
#  'token': 7698,
#  'token_str': 'AML',
#  'sequence': 'この患者はAML と診断された。'},
# {'score': 0.03562006726861,
#  'token': 3298,
#  'token_str': 'SLE',
#  'sequence': 'この患者はSLE と診断された。'},
# {'score': 0.025064188987016678,
#  'token': 10303,
#  'token_str': 'MDS',
#  'sequence': 'この患者はMDS と診断された。'},
# ...

You can fine-tune this model on downstream tasks.

See also sample Colab notebooks: https://colab.research.google.com/drive/1BUD3DKOUMqcwIO3X5bYUOsR_wDzgOJcd?usp=sharing

Tokenization

Each sentence is tokenized into tokens by SentencePiece (Unigram).

Vocabulary

The vocabulary consists of 30000 tokens induced by SentencePiece (Unigram).

Training procedure

The following hyperparameters were used during pre-training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 256
  • total_eval_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20000
  • training_steps: 2000000
  • mixed_precision_training: Native AMP

Note: Why do we call our model RoBERTa, not BERT?

As the config file suggests, our model is based on HuggingFace's BertForMaskedLM class. However, we consider our model as RoBERTa for the following reasons:

  • We kept training only with max sequence length (= 512) tokens.
  • We removed the next sentence prediction (NSP) training objective.
  • We introduced dynamic masking (changing the masking pattern in each training iteration).

Acknowledgements

This work was supported by Japan Japan Science and Technology Agency (JST) AIP Trilateral AI Research (Grant Number: JPMJCR20G9), and Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures (JHPCN) (Project ID: jh221004), in Japan.
In this research work, we used the "mdx: a platform for the data-driven future".