|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:n<1K |
|
- loss:CoSENTLoss |
|
base_model: sentence-transformers/LaBSE |
|
widget: |
|
- source_sentence: Personnel contractuel |
|
sentences: |
|
- Vacataire |
|
- Départ définitif pour cause de mutation |
|
- Fin du temps partiel thérapeutique |
|
- source_sentence: Prolongation de stage |
|
sentences: |
|
- Titularisation |
|
- Renouvellement du congé de longue durée |
|
- Fin du temps partiel thérapeutique |
|
- source_sentence: ' avancement d''échelon' |
|
sentences: |
|
- 'Avancement d''échelon ' |
|
- Renouvellement du congé de longue durée |
|
- Disponibilité pour suivre un conjoint ou un partenaire lié par un PACS |
|
- source_sentence: Sanction disciplinaire |
|
sentences: |
|
- Sanction suite à une infraction disciplinaire |
|
- Départ définitif - Radiation des cadres |
|
- Disponibilité pour suivre un conjoint ou un partenaire lié par un PACS |
|
- source_sentence: Temps partiel surcotisé |
|
sentences: |
|
- Temps partiel surcotisé de droit |
|
- Départ définitif - Radiation des cadres |
|
- Fin du temps partiel thérapeutique |
|
pipeline_tag: sentence-similarity |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/LaBSE |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision 50fe0940fa3ca3be4d2170f21395beb6d581fc44 --> |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) |
|
(3): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("aminlouhichi/CDGSmilarity") |
|
# Run inference |
|
sentences = [ |
|
'Temps partiel surcotisé', |
|
'Temps partiel surcotisé de droit', |
|
'Départ définitif - Radiation des cadres', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 295 training samples |
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | premise | hypothesis | label | |
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 9.31 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.41 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 0.9</li><li>mean: 0.95</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| premise | hypothesis | label | |
|
|:---------------------------------------------------------------------------------|:------------------------------------------------------------------|:--------------------------------| |
|
| <code>Compte rendu d'entretien professionnel</code> | <code>Synthèse des discussions professionnelles</code> | <code>0.9820208462484844</code> | |
|
| <code>Congé Accident de trajet</code> | <code>Arrêt de travail pour accident de trajet</code> | <code>0.9755981363214147</code> | |
|
| <code>Retrait ou suppression du CTI (complément de traitement indiciaire)</code> | <code>Retrait du Complément de Traitement Indiciaire (CTI)</code> | <code>0.9524167934189104</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 74 evaluation samples |
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | premise | hypothesis | label | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 10.26 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.5 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 0.9</li><li>mean: 0.95</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| premise | hypothesis | label | |
|
|:--------------------------------------------------|:----------------------------------------------------------------|:--------------------------------| |
|
| <code>Sanction disciplinaire</code> | <code>Mesure punitive suite à une violation du règlement</code> | <code>0.958828679924412</code> | |
|
| <code>Départ définitif / Radiation - Décès</code> | <code>Départ définitif suite au décès d'un agent</code> | <code>0.9003635138326387</code> | |
|
| <code>Nomination par intégration directe</code> | <code>Intégration immédiate avec nomination</code> | <code>0.9993378836623817</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 30 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 30 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | |
|
|:-------:|:----:|:-------------:|:------:| |
|
| 0.5263 | 10 | 12.4933 | - | |
|
| 1.0526 | 20 | 10.5909 | - | |
|
| 1.5789 | 30 | 7.0607 | - | |
|
| 2.1053 | 40 | 4.7061 | - | |
|
| 2.6316 | 50 | 4.7957 | - | |
|
| 3.1579 | 60 | 4.624 | - | |
|
| 3.6842 | 70 | 4.7854 | - | |
|
| 4.2105 | 80 | 4.5902 | - | |
|
| 4.7368 | 90 | 4.7051 | - | |
|
| 5.2632 | 100 | 4.5562 | 4.6756 | |
|
| 5.7895 | 110 | 4.6376 | - | |
|
| 6.3158 | 120 | 4.4501 | - | |
|
| 6.8421 | 130 | 4.5993 | - | |
|
| 7.3684 | 140 | 4.4878 | - | |
|
| 7.8947 | 150 | 4.5443 | - | |
|
| 8.4211 | 160 | 4.3091 | - | |
|
| 8.9474 | 170 | 4.6699 | - | |
|
| 9.4737 | 180 | 4.3727 | - | |
|
| 10.0 | 190 | 4.3888 | - | |
|
| 10.5263 | 200 | 4.5099 | 5.3597 | |
|
| 11.0526 | 210 | 4.3427 | - | |
|
| 11.5789 | 220 | 4.4409 | - | |
|
| 12.1053 | 230 | 4.3151 | - | |
|
| 12.6316 | 240 | 4.3522 | - | |
|
| 13.1579 | 250 | 4.3133 | - | |
|
| 13.6842 | 260 | 4.3842 | - | |
|
| 14.2105 | 270 | 4.2708 | - | |
|
| 14.7368 | 280 | 4.387 | - | |
|
| 15.2632 | 290 | 4.1131 | - | |
|
| 15.7895 | 300 | 4.3394 | 5.5109 | |
|
| 16.3158 | 310 | 4.2948 | - | |
|
| 16.8421 | 320 | 4.3413 | - | |
|
| 17.3684 | 330 | 4.1427 | - | |
|
| 17.8947 | 340 | 4.5521 | - | |
|
| 18.4211 | 350 | 4.2146 | - | |
|
| 18.9474 | 360 | 4.2039 | - | |
|
| 19.4737 | 370 | 4.1412 | - | |
|
| 20.0 | 380 | 4.0869 | - | |
|
| 20.5263 | 390 | 4.4763 | - | |
|
| 21.0526 | 400 | 3.9572 | 5.7054 | |
|
| 21.5789 | 410 | 4.2114 | - | |
|
| 22.1053 | 420 | 4.2651 | - | |
|
| 22.6316 | 430 | 4.2231 | - | |
|
| 23.1579 | 440 | 4.0521 | - | |
|
| 23.6842 | 450 | 4.3246 | - | |
|
| 24.2105 | 460 | 3.9145 | - | |
|
| 24.7368 | 470 | 4.1701 | - | |
|
| 25.2632 | 480 | 4.0958 | - | |
|
| 25.7895 | 490 | 4.1177 | - | |
|
| 26.3158 | 500 | 4.2388 | 6.3162 | |
|
| 26.8421 | 510 | 4.3043 | - | |
|
| 27.3684 | 520 | 3.9634 | - | |
|
| 27.8947 | 530 | 4.117 | - | |
|
| 28.4211 | 540 | 4.1732 | - | |
|
| 28.9474 | 550 | 4.1243 | - | |
|
| 29.4737 | 560 | 3.7898 | - | |
|
| 30.0 | 570 | 4.0227 | - | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.1 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |