cvt-13 / README.md
andrecastro's picture
Model save
d4c9490
metadata
license: apache-2.0
base_model: microsoft/cvt-13
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: cvt-13
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9886363636363636

cvt-13

This model is a fine-tuned version of microsoft/cvt-13 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0361
  • Accuracy: 0.9886

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4048 1.0 327 0.2161 0.9156
0.33 2.0 654 0.1320 0.9501
0.3147 3.0 981 0.1060 0.9612
0.2213 4.0 1309 0.0820 0.9742
0.3256 5.0 1636 0.0717 0.9750
0.3207 6.0 1963 0.1062 0.9626
0.2273 7.0 2290 0.0535 0.9797
0.2066 8.0 2618 0.0566 0.9817
0.2162 9.0 2945 0.0459 0.9828
0.2296 10.0 3272 0.0444 0.9851
0.187 11.0 3599 0.0348 0.9882
0.2208 12.0 3927 0.0505 0.9848
0.1855 13.0 4254 0.0371 0.9869
0.1875 14.0 4581 0.0384 0.9880
0.202 14.99 4905 0.0361 0.9886

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0