|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/cvt-13 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: cvt-13 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9886363636363636 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# cvt-13 |
|
|
|
This model is a fine-tuned version of [microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0361 |
|
- Accuracy: 0.9886 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.4048 | 1.0 | 327 | 0.2161 | 0.9156 | |
|
| 0.33 | 2.0 | 654 | 0.1320 | 0.9501 | |
|
| 0.3147 | 3.0 | 981 | 0.1060 | 0.9612 | |
|
| 0.2213 | 4.0 | 1309 | 0.0820 | 0.9742 | |
|
| 0.3256 | 5.0 | 1636 | 0.0717 | 0.9750 | |
|
| 0.3207 | 6.0 | 1963 | 0.1062 | 0.9626 | |
|
| 0.2273 | 7.0 | 2290 | 0.0535 | 0.9797 | |
|
| 0.2066 | 8.0 | 2618 | 0.0566 | 0.9817 | |
|
| 0.2162 | 9.0 | 2945 | 0.0459 | 0.9828 | |
|
| 0.2296 | 10.0 | 3272 | 0.0444 | 0.9851 | |
|
| 0.187 | 11.0 | 3599 | 0.0348 | 0.9882 | |
|
| 0.2208 | 12.0 | 3927 | 0.0505 | 0.9848 | |
|
| 0.1855 | 13.0 | 4254 | 0.0371 | 0.9869 | |
|
| 0.1875 | 14.0 | 4581 | 0.0384 | 0.9880 | |
|
| 0.202 | 14.99 | 4905 | 0.0361 | 0.9886 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|