metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- f1
widget:
- text: >
Pointing out the glaring nature of the smear campaign was the fact that
there has been absolutely zero information released about the warrants
conducted on officer Amber Guyger, the killer cop who lived just below
Jean.
- text: |
Ganesh makes wild leaps and inferences.
- text: >
But during his 2004 campaign for the Senate, Obama and his corrupt party
in Chicago somehow managed to unseal the divorce records of his opponent
Jack Ryan, who was leading by a large margin.
- text: >
Trump has only the “deplorables,” and they are unorganized and will
experience retribution once Trump is removed.
- text: >
“Al Franken must be held accountable if our party wants to live up to our
commitment to women & girls.”
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: f1
value: 0.2236842105263158
name: F1
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Evaluation
Metrics
Label | F1 |
---|---|
all | 0.2237 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/appeal-to-authority-setfit-model")
# Run inference
preds = model("Ganesh makes wild leaps and inferences.
")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 28.8867 | 111 |
Label | Training Sample Count |
---|---|
0 | 452 |
1 | 113 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0007 | 1 | 0.3148 | - |
0.0354 | 50 | 0.2792 | - |
0.0708 | 100 | 0.1707 | - |
0.1062 | 150 | 0.1197 | - |
0.1415 | 200 | 0.0768 | - |
0.1769 | 250 | 0.0406 | - |
0.2123 | 300 | 0.0053 | - |
0.2477 | 350 | 0.0571 | - |
0.2831 | 400 | 0.0324 | - |
0.3185 | 450 | 0.001 | - |
0.3539 | 500 | 0.077 | - |
0.3892 | 550 | 0.0002 | - |
0.4246 | 600 | 0.0011 | - |
0.4600 | 650 | 0.003 | - |
0.4954 | 700 | 0.0004 | - |
0.5308 | 750 | 0.0004 | - |
0.5662 | 800 | 0.0006 | - |
0.6016 | 850 | 0.0002 | - |
0.6369 | 900 | 0.0002 | - |
0.6723 | 950 | 0.0003 | - |
0.7077 | 1000 | 0.0116 | - |
0.7431 | 1050 | 0.0059 | - |
0.7785 | 1100 | 0.0002 | - |
0.8139 | 1150 | 0.0001 | - |
0.8493 | 1200 | 0.0001 | - |
0.8846 | 1250 | 0.0003 | - |
0.9200 | 1300 | 0.0001 | - |
0.9554 | 1350 | 0.0 | - |
0.9908 | 1400 | 0.0125 | - |
1.0 | 1413 | - | 0.2868 |
1.0262 | 1450 | 0.0003 | - |
1.0616 | 1500 | 0.0002 | - |
1.0970 | 1550 | 0.0001 | - |
1.1323 | 1600 | 0.0002 | - |
1.1677 | 1650 | 0.0001 | - |
1.2031 | 1700 | 0.0001 | - |
1.2385 | 1750 | 0.0038 | - |
1.2739 | 1800 | 0.0001 | - |
1.3093 | 1850 | 0.0065 | - |
1.3447 | 1900 | 0.0002 | - |
1.3800 | 1950 | 0.0002 | - |
1.4154 | 2000 | 0.0197 | - |
1.4508 | 2050 | 0.0061 | - |
1.4862 | 2100 | 0.0001 | - |
1.5216 | 2150 | 0.0 | - |
1.5570 | 2200 | 0.0321 | - |
1.5924 | 2250 | 0.0002 | - |
1.6277 | 2300 | 0.0331 | - |
1.6631 | 2350 | 0.0069 | - |
1.6985 | 2400 | 0.0001 | - |
1.7339 | 2450 | 0.0 | - |
1.7693 | 2500 | 0.0 | - |
1.8047 | 2550 | 0.0337 | - |
1.8401 | 2600 | 0.0347 | - |
1.8754 | 2650 | 0.0612 | - |
1.9108 | 2700 | 0.0398 | - |
1.9462 | 2750 | 0.0001 | - |
1.9816 | 2800 | 0.0001 | - |
2.0 | 2826 | - | 0.2926 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}