SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8151 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/doubt_repetition_with_noPropaganda_SetFit")
# Run inference
preds = model("At some point, the officer fired her weapon striking the victim.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 20.8138 | 129 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.3567 | - |
0.0209 | 50 | 0.3286 | - |
0.0419 | 100 | 0.2663 | - |
0.0628 | 150 | 0.2378 | - |
0.0838 | 200 | 0.1935 | - |
0.1047 | 250 | 0.2549 | - |
0.1257 | 300 | 0.2654 | - |
0.1466 | 350 | 0.1668 | - |
0.1676 | 400 | 0.1811 | - |
0.1885 | 450 | 0.1884 | - |
0.2095 | 500 | 0.157 | - |
0.2304 | 550 | 0.1237 | - |
0.2514 | 600 | 0.1318 | - |
0.2723 | 650 | 0.1334 | - |
0.2933 | 700 | 0.1067 | - |
0.3142 | 750 | 0.1189 | - |
0.3351 | 800 | 0.135 | - |
0.3561 | 850 | 0.0782 | - |
0.3770 | 900 | 0.0214 | - |
0.3980 | 950 | 0.0511 | - |
0.4189 | 1000 | 0.0924 | - |
0.4399 | 1050 | 0.1418 | - |
0.4608 | 1100 | 0.0132 | - |
0.4818 | 1150 | 0.0018 | - |
0.5027 | 1200 | 0.0706 | - |
0.5237 | 1250 | 0.1502 | - |
0.5446 | 1300 | 0.133 | - |
0.5656 | 1350 | 0.0207 | - |
0.5865 | 1400 | 0.0589 | - |
0.6075 | 1450 | 0.0771 | - |
0.6284 | 1500 | 0.0241 | - |
0.6494 | 1550 | 0.0905 | - |
0.6703 | 1600 | 0.0106 | - |
0.6912 | 1650 | 0.0451 | - |
0.7122 | 1700 | 0.0011 | - |
0.7331 | 1750 | 0.0075 | - |
0.7541 | 1800 | 0.0259 | - |
0.7750 | 1850 | 0.0052 | - |
0.7960 | 1900 | 0.0464 | - |
0.8169 | 1950 | 0.0039 | - |
0.8379 | 2000 | 0.0112 | - |
0.8588 | 2050 | 0.0061 | - |
0.8798 | 2100 | 0.0143 | - |
0.9007 | 2150 | 0.0886 | - |
0.9217 | 2200 | 0.2225 | - |
0.9426 | 2250 | 0.0022 | - |
0.9636 | 2300 | 0.0035 | - |
0.9845 | 2350 | 0.002 | - |
1.0 | 2387 | - | 0.2827 |
1.0054 | 2400 | 0.0315 | - |
1.0264 | 2450 | 0.0049 | - |
1.0473 | 2500 | 0.0305 | - |
1.0683 | 2550 | 0.0334 | - |
1.0892 | 2600 | 0.0493 | - |
1.1102 | 2650 | 0.0424 | - |
1.1311 | 2700 | 0.0011 | - |
1.1521 | 2750 | 0.0109 | - |
1.1730 | 2800 | 0.0009 | - |
1.1940 | 2850 | 0.0005 | - |
1.2149 | 2900 | 0.0171 | - |
1.2359 | 2950 | 0.0004 | - |
1.2568 | 3000 | 0.0717 | - |
1.2778 | 3050 | 0.0019 | - |
1.2987 | 3100 | 0.062 | - |
1.3196 | 3150 | 0.0003 | - |
1.3406 | 3200 | 0.0018 | - |
1.3615 | 3250 | 0.0011 | - |
1.3825 | 3300 | 0.0005 | - |
1.4034 | 3350 | 0.0208 | - |
1.4244 | 3400 | 0.0004 | - |
1.4453 | 3450 | 0.001 | - |
1.4663 | 3500 | 0.0003 | - |
1.4872 | 3550 | 0.0015 | - |
1.5082 | 3600 | 0.0004 | - |
1.5291 | 3650 | 0.0473 | - |
1.5501 | 3700 | 0.0092 | - |
1.5710 | 3750 | 0.032 | - |
1.5920 | 3800 | 0.0016 | - |
1.6129 | 3850 | 0.0623 | - |
1.6339 | 3900 | 0.0291 | - |
1.6548 | 3950 | 0.0386 | - |
1.6757 | 4000 | 0.002 | - |
1.6967 | 4050 | 0.0006 | - |
1.7176 | 4100 | 0.0005 | - |
1.7386 | 4150 | 0.0004 | - |
1.7595 | 4200 | 0.0004 | - |
1.7805 | 4250 | 0.0007 | - |
1.8014 | 4300 | 0.033 | - |
1.8224 | 4350 | 0.0001 | - |
1.8433 | 4400 | 0.0489 | - |
1.8643 | 4450 | 0.0754 | - |
1.8852 | 4500 | 0.0086 | - |
1.9062 | 4550 | 0.0092 | - |
1.9271 | 4600 | 0.0591 | - |
1.9481 | 4650 | 0.0013 | - |
1.9690 | 4700 | 0.0043 | - |
1.9899 | 4750 | 0.0338 | - |
2.0 | 4774 | - | 0.3304 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 10
Inference API (serverless) has been turned off for this model.