anismahmahi's picture
Add SetFit model
4d7e7f5
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
widget:
  - text: >-
      Texas: Cop Walks Into Home She Thought Was Hers, Kills Innocent
      Homeowner—Not Arrested
  - text: >-
      Ellison subsequently agreed to dismiss his restraining order against her
      if she no longer contacted him.
  - text: >-
      Gina Haspel will become the new Director of the CIA, and the first woman
      so chosen.
  - text: At some point, the officer fired her weapon striking the victim.
  - text: >-
      Ronaldo Rauseo-Ricupero, a lawyer for the Indonesians, argued they should
      have 90 days to move to reopen their cases after receiving copies of their
      administrative case files and time to appeal any decision rejecting those
      motions.
pipeline_tag: text-classification
inference: false
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.8151016456921588
            name: Accuracy

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label Accuracy
all 0.8151

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/doubt_repetition_with_noPropaganda_SetFit")
# Run inference
preds = model("At some point, the officer fired her weapon striking the victim.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 20.8138 129

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 5
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0004 1 0.3567 -
0.0209 50 0.3286 -
0.0419 100 0.2663 -
0.0628 150 0.2378 -
0.0838 200 0.1935 -
0.1047 250 0.2549 -
0.1257 300 0.2654 -
0.1466 350 0.1668 -
0.1676 400 0.1811 -
0.1885 450 0.1884 -
0.2095 500 0.157 -
0.2304 550 0.1237 -
0.2514 600 0.1318 -
0.2723 650 0.1334 -
0.2933 700 0.1067 -
0.3142 750 0.1189 -
0.3351 800 0.135 -
0.3561 850 0.0782 -
0.3770 900 0.0214 -
0.3980 950 0.0511 -
0.4189 1000 0.0924 -
0.4399 1050 0.1418 -
0.4608 1100 0.0132 -
0.4818 1150 0.0018 -
0.5027 1200 0.0706 -
0.5237 1250 0.1502 -
0.5446 1300 0.133 -
0.5656 1350 0.0207 -
0.5865 1400 0.0589 -
0.6075 1450 0.0771 -
0.6284 1500 0.0241 -
0.6494 1550 0.0905 -
0.6703 1600 0.0106 -
0.6912 1650 0.0451 -
0.7122 1700 0.0011 -
0.7331 1750 0.0075 -
0.7541 1800 0.0259 -
0.7750 1850 0.0052 -
0.7960 1900 0.0464 -
0.8169 1950 0.0039 -
0.8379 2000 0.0112 -
0.8588 2050 0.0061 -
0.8798 2100 0.0143 -
0.9007 2150 0.0886 -
0.9217 2200 0.2225 -
0.9426 2250 0.0022 -
0.9636 2300 0.0035 -
0.9845 2350 0.002 -
1.0 2387 - 0.2827
1.0054 2400 0.0315 -
1.0264 2450 0.0049 -
1.0473 2500 0.0305 -
1.0683 2550 0.0334 -
1.0892 2600 0.0493 -
1.1102 2650 0.0424 -
1.1311 2700 0.0011 -
1.1521 2750 0.0109 -
1.1730 2800 0.0009 -
1.1940 2850 0.0005 -
1.2149 2900 0.0171 -
1.2359 2950 0.0004 -
1.2568 3000 0.0717 -
1.2778 3050 0.0019 -
1.2987 3100 0.062 -
1.3196 3150 0.0003 -
1.3406 3200 0.0018 -
1.3615 3250 0.0011 -
1.3825 3300 0.0005 -
1.4034 3350 0.0208 -
1.4244 3400 0.0004 -
1.4453 3450 0.001 -
1.4663 3500 0.0003 -
1.4872 3550 0.0015 -
1.5082 3600 0.0004 -
1.5291 3650 0.0473 -
1.5501 3700 0.0092 -
1.5710 3750 0.032 -
1.5920 3800 0.0016 -
1.6129 3850 0.0623 -
1.6339 3900 0.0291 -
1.6548 3950 0.0386 -
1.6757 4000 0.002 -
1.6967 4050 0.0006 -
1.7176 4100 0.0005 -
1.7386 4150 0.0004 -
1.7595 4200 0.0004 -
1.7805 4250 0.0007 -
1.8014 4300 0.033 -
1.8224 4350 0.0001 -
1.8433 4400 0.0489 -
1.8643 4450 0.0754 -
1.8852 4500 0.0086 -
1.9062 4550 0.0092 -
1.9271 4600 0.0591 -
1.9481 4650 0.0013 -
1.9690 4700 0.0043 -
1.9899 4750 0.0338 -
2.0 4774 - 0.3304
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.1
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}