metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:89218
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/multi-qa-mpnet-base-dot-v1
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
widget:
- source_sentence: Pulmonary stenoses, brachytelephalangy, inner ear deafness
sentences:
- >-
This article needs more medical references for verification or relies
too heavily on primary sources. Please review the contents of the
article and add the appropriate references if you can. Unsourced or
poorly sourced material may be challenged and removed.
Find sources: "Chondropathy" – news · newspapers · books · scholar ·
JSTOR (October 2020)
Chondropathy
SpecialtyOrthopedics
Chondropathy refers to a disease of the cartilage. It is frequently
divided into 5 grades, with 0-2 defined as normal and 3-4 defined as
diseased.
## Contents
* 1 Some common diseases affecting/involving the cartilage
* 2 Repairing articular cartilage damage
* 3 References
* 4 External links
## Some common diseases affecting/involving the cartilage[edit]
- >-
A number sign (#) is used with this entry because of evidence that
Keutel syndrome (KTLS) is caused by homozygous mutation in the gene
encoding the human matrix Gla protein (MGP; 154870) on chromosome 12p12.
Description
Keutel syndrome is an autosomal recessive disorder characterized by
multiple peripheral pulmonary stenoses, brachytelephalangy, inner ear
deafness, and abnormal cartilage ossification or calcification (summary
by Khosroshahi et al., 2014).
Clinical Features
- >-
## Description
Primary or spontaneous detachment of the retina occurs due to underlying
ocular disease and often involves the vitreous as well as the retina.
The precipitating event is formation of a retinal tear or hole, which
permits fluid to accumulate under the sensory layers of the retina and
creates an intraretinal cleavage that destroys the neurosensory process
of visual reception. Vitreoretinal degeneration and tear formation are
painless phenomena, and in most cases, significant vitreoretinal
pathology is found only after detachment of the retina starts to cause
loss of vision or visual field. Without surgical intervention, retinal
detachment will almost inevitably lead to total blindness (summary by
McNiel and McPherson, 1971).
Clinical Features
- source_sentence: APS, catastrophic, diagnostic criteria, treatment options
sentences:
- >-
A number sign (#) is used with this entry because of evidence that
myofibrillar myopathy-8 (MFM8) is caused by homozygous or compound
heterozygous mutation in the PYROXD1 gene (617220) on chromosome 12p12.
Description
Myofibrillar myopathy-8 is an autosomal recessive myopathy characterized
by childhood onset of slowly progressive proximal muscle weakness and
atrophy resulting in increased falls, gait problems, and difficulty
running or climbing stairs. Upper and lower limbs are affected, and some
individuals develop distal muscle weakness and atrophy. Ambulation is
generally preserved, and patients do not have significant respiratory
compromise. Muscle biopsy shows a mix of myopathic features, including
myofibrillar inclusions and sarcomeric disorganization (summary by
O'Grady et al., 2016).
For a general phenotypic description and a discussion of genetic
heterogeneity of myofibrillar myopathy, see MFM1 (601419).
Clinical Features
- >-
Rectal tenesmus
SpecialtyGeneral surgery
Rectal tenesmus is a feeling of incomplete defecation. It is the
sensation of inability or difficulty to empty the bowel at defecation,
even if the bowel contents have already been evacuated. Tenesmus
indicates the feeling of a residue, and is not always correlated with
the actual presence of residual fecal matter in the rectum. It is
frequently painful and may be accompanied by involuntary straining and
other gastrointestinal symptoms. Tenesmus has both a nociceptive and a
neuropathic component.
Vesical tenesmus is a similar condition, experienced as a feeling of
incomplete voiding despite the bladder being empty.
Often, rectal tenesmus is simply called tenesmus. The term rectal
tenesmus is a retronym to distinguish defecation-related tenesmus from
vesical tenesmus.[1]
- >-
This article needs additional citations for verification. Please help
improve this article by adding citations to reliable sources. Unsourced
material may be challenged and removed.
Find sources: "Catastrophic antiphospholipid syndrome" – news ·
newspapers · books · scholar · JSTOR (February 2018) (Learn how and when
to remove this template message)
Catastrophic antiphospholipid syndrome
Other namesCatastrophic APS
- source_sentence: Excess cholesterol, foam cells, gallbladder wall changes
sentences:
- >-
Cholesterolosis of gallbladder
Micrograph of cholesterolosis of the gallbladder, with an annotated foam
cell. H&E stain.
SpecialtyGastroenterology
In surgical pathology, strawberry gallbladder, more formally
cholesterolosis of the gallbladder and gallbladder cholesterolosis, is a
change in the gallbladder wall due to excess cholesterol.[1]
The name strawberry gallbladder comes from the typically stippled
appearance of the mucosal surface on gross examination, which resembles
a strawberry. Cholesterolosis results from abnormal deposits of
cholesterol esters in macrophages within the lamina propria (foam cells)
and in mucosal epithelium. The gallbladder may be affected in a patchy
localized form or in a diffuse form. The diffuse form macroscopically
appears as a bright red mucosa with yellow mottling (due to lipid),
hence the term strawberry gallbladder. It is not tied to cholelithiasis
(gallstones) or cholecystitis (inflammation of the gallbladder).[2]
## Contents
- >-
Meningococcal meningitis is an acute bacterial disease caused by
Neisseria meningitides that presents usually, but not always, with a
rash (non blanching petechial or purpuric rash), progressively
developing signs of meningitis (fever, vomiting, headache, photophobia,
and neck stiffness) and later leading to confusion, delirium and
drowsiness. Neck stiffness and photophobia are often absent in infants
and young children who may manifest nonspecific signs such as
irritability, inconsolable crying, poor feeding, and a bulging fontanel.
Meningococcal meningitis may also present as part of early or late onset
sepsis in neonates. The disease is potentially fatal. Surviving patients
may develop neurological sequelae that include sensorineural hearing
loss, seizures, spasticity, attention deficits and intellectual
disability.
- >-
Retiform parapsoriasis
SpecialtyDermatology
Retiform parapsoriasis is a cutaneous condition, considered to be a type
of large-plaque parapsoriasis.[1] It is characterized by widespread,
ill-defined plaques on the skin, that have a net-like or zebra-striped
pattern.[2] Skin atrophy, a wasting away of the cutaneous tissue,
usually occurs within the area of these plaques.[1]
## See also[edit]
* Parapsoriasis
* Poikiloderma vasculare atrophicans
* List of cutaneous conditions
## References[edit]
1. ^ a b Lambert WC, Everett MA (Oct 1981). "The nosology of parapsoriasis". J. Am. Acad. Dermatol. 5 (4): 373–95. doi:10.1016/S0190-9622(81)70100-2. PMID 7026622.
2. ^ Rapini, Ronald P.; Bolognia, Jean L.; Jorizzo, Joseph L. (2007). Dermatology: 2-Volume Set. St. Louis: Mosby. ISBN 1-4160-2999-0.
## External links[edit]
Classification
D
* ICD-10: L41.5
* ICD-9-CM: 696.2
* v
* t
* e
Papulosquamous disorders
Psoriasis
Pustular
- source_sentence: >-
Pulmonary hypoplasia, respiratory insufficiency, megaureter,
hydronephrosis
sentences:
- >-
A rare fetal lower urinary tract obstruction (LUTO) characterized by
closure or failure to develop an opening in the urethra and resulting in
obstructive uropathy presenting in utero as megacystis, oligohydramnios
or anhydramnios, and potter sequence.
## Epidemiology
Prevalence is unknown, but is higher in males than females.
## Clinical description
Atresia of urethra often presents on routine antenatal ultrasound with
megacystis, oligohydramnios or anhydramnios and sometimes urinary
ascites. It may cause fetal death. In cases that survive to birth,
additional symptoms include respiratory insufficiency due to pulmonary
hypoplasia, megaureter, hydronephrosis and enlarged often cystic and
functionally impaired/non-functional dysplastic kidneys as well as
abdominal distention. Furthermore, a Potter sequence can be found due to
oligo- or anhydramnios. Patients may present with patent urachus or
vesicocutaneous fistula.
## Etiology
- >-
X-linked distal spinal muscular atrophy type 3 is a rare distal
hereditary motor neuropathy characterized by slowly progressive atrophy
and weakness of distal muscles of hands and feet with normal deep tendon
reflexes or absent ankle reflexes and minimal or no sensory loss,
sometimes mild proximal weakness in the legs and feet and hand
deformities in males.
- >-
A number sign (#) is used with this entry because Chudley-McCullough
syndrome (CMCS) is caused by homozygous or compound heterozygous
mutation in the GPSM2 gene (609245) on chromosome 1p13.
Description
Chudley-McCullough syndrome is an autosomal recessive neurologic
disorder characterized by early-onset sensorineural deafness and
specific brain anomalies on MRI, including hypoplasia of the corpus
callosum, enlarged cysterna magna with mild focal cerebellar dysplasia,
and nodular heterotopia. Some patients have hydrocephalus. Psychomotor
development is normal (summary by Alrashdi et al., 2011).
Clinical Features
- source_sentence: >-
Thyroid-stimulating hormone receptor gene, chromosome 14q31, homozygous
mutation
sentences:
- >-
A number sign (#) is used with this entry because dermatofibrosarcoma
protuberans is caused in most cases by a specific fusion of the COL1A1
gene (120150) with the PDGFB gene (190040); see 190040.0002.
Description
Dermatofibrosarcoma protuberans (DFSP) is an uncommon, locally
aggressive, but rarely metastasizing tumor of the deep dermis and
subcutaneous tissue. It typically presents during early or middle adult
life and is most frequently located on the trunk and proximal
extremities (Sandberg et al., 2003).
Clinical Features
DFSP was first described by Taylor (1890). Sirvent et al. (2003) stated
that, because DFSP is relatively rare, grows slowly, and has a low level
of aggressiveness, its clinical significance has been underestimated. In
particular, they noted that the existence of pediatric cases has been
overlooked.
Gardner et al. (1998) described a father and son with
dermatofibrosarcoma protuberans. The tumors arose at ages 43 and 14
years, respectively.
- >-
Visuospatial dysgnosia is a loss of the sense of "whereness" in the
relation of oneself to one's environment and in the relation of objects
to each other.[1] Visuospatial dysgnosia is often linked with
topographical disorientation.
## Contents
* 1 Symptoms
* 2 Lesion areas
* 3 Case studies
* 4 Therapies
* 5 References
## Symptoms[edit]
The syndrome rarely presents itself the same way in every patient. Some
symptoms that occur may be:
- >-
A number sign (#) is used with this entry because of evidence that
congenital nongoitrous hypothyroidism-1 (CHNG1) is caused by homozygous
or compound heterozygous mutation in the gene encoding the
thyroid-stimulating hormone receptor (TSHR; 603372) on chromosome 14q31.
Description
Resistance to thyroid-stimulating hormone (TSH; see 188540), a hallmark
of congenital nongoitrous hypothyroidism, causes increased levels of
plasma TSH and low levels of thyroid hormone. Only a subset of patients
develop frank hypothyroidism; the remainder are euthyroid and
asymptomatic (so-called compensated hypothyroidism) and are usually
detected by neonatal screening programs (Paschke and Ludgate, 1997).
### Genetic Heterogeneity of Congenital Nongoitrous Hypothyroidism
pipeline_tag: sentence-similarity
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/multi-qa-mpnet-base-dot-v1
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.1900990099009901
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5756875687568757
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7932893289328933
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8704070407040704
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1900990099009901
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.19189585625229189
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15865786578657867
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08704070407040705
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1900990099009901
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5756875687568757
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7932893289328933
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8704070407040704
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.526584144074431
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.41522683220700946
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4194005014371134
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.188998899889989
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5761826182618262
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7954895489548955
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8710671067106711
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.188998899889989
name: Dot Precision@1
- type: dot_precision@3
value: 0.19206087275394204
name: Dot Precision@3
- type: dot_precision@5
value: 0.15909790979097907
name: Dot Precision@5
- type: dot_precision@10
value: 0.08710671067106711
name: Dot Precision@10
- type: dot_recall@1
value: 0.188998899889989
name: Dot Recall@1
- type: dot_recall@3
value: 0.5761826182618262
name: Dot Recall@3
- type: dot_recall@5
value: 0.7954895489548955
name: Dot Recall@5
- type: dot_recall@10
value: 0.8710671067106711
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5265923432373186
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4149802896956161
name: Dot Mrr@10
- type: dot_map@100
value: 0.41904239679820193
name: Dot Map@100
SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
This is a sentence-transformers model finetuned from sentence-transformers/multi-qa-mpnet-base-dot-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/multi-qa-mpnet-base-dot-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Dot Product
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Thyroid-stimulating hormone receptor gene, chromosome 14q31, homozygous mutation',
'A number sign (#) is used with this entry because of evidence that congenital nongoitrous hypothyroidism-1 (CHNG1) is caused by homozygous or compound heterozygous mutation in the gene encoding the thyroid-stimulating hormone receptor (TSHR; 603372) on chromosome 14q31.\n\nDescription\n\nResistance to thyroid-stimulating hormone (TSH; see 188540), a hallmark of congenital nongoitrous hypothyroidism, causes increased levels of plasma TSH and low levels of thyroid hormone. Only a subset of patients develop frank hypothyroidism; the remainder are euthyroid and asymptomatic (so-called compensated hypothyroidism) and are usually detected by neonatal screening programs (Paschke and Ludgate, 1997).\n\n### Genetic Heterogeneity of Congenital Nongoitrous Hypothyroidism',
'Visuospatial dysgnosia is a loss of the sense of "whereness" in the relation of oneself to one\'s environment and in the relation of objects to each other.[1] Visuospatial dysgnosia is often linked with topographical disorientation.\n\n## Contents\n\n * 1 Symptoms\n * 2 Lesion areas\n * 3 Case studies\n * 4 Therapies\n * 5 References\n\n## Symptoms[edit]\n\nThe syndrome rarely presents itself the same way in every patient. Some symptoms that occur may be:',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1901 |
cosine_accuracy@3 | 0.5757 |
cosine_accuracy@5 | 0.7933 |
cosine_accuracy@10 | 0.8704 |
cosine_precision@1 | 0.1901 |
cosine_precision@3 | 0.1919 |
cosine_precision@5 | 0.1587 |
cosine_precision@10 | 0.087 |
cosine_recall@1 | 0.1901 |
cosine_recall@3 | 0.5757 |
cosine_recall@5 | 0.7933 |
cosine_recall@10 | 0.8704 |
cosine_ndcg@10 | 0.5266 |
cosine_mrr@10 | 0.4152 |
cosine_map@100 | 0.4194 |
dot_accuracy@1 | 0.189 |
dot_accuracy@3 | 0.5762 |
dot_accuracy@5 | 0.7955 |
dot_accuracy@10 | 0.8711 |
dot_precision@1 | 0.189 |
dot_precision@3 | 0.1921 |
dot_precision@5 | 0.1591 |
dot_precision@10 | 0.0871 |
dot_recall@1 | 0.189 |
dot_recall@3 | 0.5762 |
dot_recall@5 | 0.7955 |
dot_recall@10 | 0.8711 |
dot_ndcg@10 | 0.5266 |
dot_mrr@10 | 0.415 |
dot_map@100 | 0.419 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 89,218 training samples
- Columns:
queries
andchunks
- Approximate statistics based on the first 1000 samples:
queries chunks type string string details - min: 7 tokens
- mean: 18.07 tokens
- max: 63 tokens
- min: 5 tokens
- mean: 161.59 tokens
- max: 299 tokens
- Samples:
queries chunks Polyhydramnios, megalencephaly, symptomatic epilepsy
A number sign (#) is used with this entry because of evidence that polyhydramnios, megalencephaly, and symptomatic epilepsy (PMSE) is caused by homozygous mutation in the STRADA gene (608626) on chromosome 17q23.
Clinical FeaturesPolyhydramnios, megalencephaly, STRADA gene mutation
A number sign (#) is used with this entry because of evidence that polyhydramnios, megalencephaly, and symptomatic epilepsy (PMSE) is caused by homozygous mutation in the STRADA gene (608626) on chromosome 17q23.
Clinical FeaturesMegalencephaly, symptomatic epilepsy, chromosome 17q23
A number sign (#) is used with this entry because of evidence that polyhydramnios, megalencephaly, and symptomatic epilepsy (PMSE) is caused by homozygous mutation in the STRADA gene (608626) on chromosome 17q23.
Clinical Features - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 1, "similarity_fct": "dot_score" }
Evaluation Dataset
Unnamed Dataset
- Size: 18,180 evaluation samples
- Columns:
queries
andchunks
- Approximate statistics based on the first 1000 samples:
queries chunks type string string details - min: 6 tokens
- mean: 18.35 tokens
- max: 82 tokens
- min: 4 tokens
- mean: 152.55 tokens
- max: 312 tokens
- Samples:
queries chunks Weight loss, anorexia, fatigue, epigastric pain and discomfort
Undifferentiated carcinoma of stomach is a rare epithelial tumour of the stomach that lacks any features of differentiation beyond an epithelial phenotype. The presenting symptoms are usually vague and nonspecific, such as weight loss, anorexia, fatigue, epigastric pain and discomfort, heartburn and nausea, vomiting or hematemesis. Patients may also be asymptomatic. Ascites, jaundice, intestinal obstruction and peripheral lymphadenopathy indicate advanced stages and metastatic spread.
Heartburn, nausea, vomiting, hematemesis
Undifferentiated carcinoma of stomach is a rare epithelial tumour of the stomach that lacks any features of differentiation beyond an epithelial phenotype. The presenting symptoms are usually vague and nonspecific, such as weight loss, anorexia, fatigue, epigastric pain and discomfort, heartburn and nausea, vomiting or hematemesis. Patients may also be asymptomatic. Ascites, jaundice, intestinal obstruction and peripheral lymphadenopathy indicate advanced stages and metastatic spread.
Ascites, jaundice, intestinal obstruction, peripheral lymphadenopathy
Undifferentiated carcinoma of stomach is a rare epithelial tumour of the stomach that lacks any features of differentiation beyond an epithelial phenotype. The presenting symptoms are usually vague and nonspecific, such as weight loss, anorexia, fatigue, epigastric pain and discomfort, heartburn and nausea, vomiting or hematemesis. Patients may also be asymptomatic. Ascites, jaundice, intestinal obstruction and peripheral lymphadenopathy indicate advanced stages and metastatic spread.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 1, "similarity_fct": "dot_score" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 50warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueeval_on_start
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 50max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss | dot_map@100 |
---|---|---|---|---|
0 | 0 | - | 1.1605 | 0.2419 |
0.1435 | 100 | 1.2016 | - | - |
0.2869 | 200 | 0.7627 | - | - |
0.4304 | 300 | 0.5559 | - | - |
0.5739 | 400 | 0.4541 | - | - |
0.7174 | 500 | 0.1451 | 0.3600 | 0.3913 |
0.8608 | 600 | 0.3841 | - | - |
1.0057 | 700 | 0.3334 | - | - |
1.1492 | 800 | 0.3898 | - | - |
1.2927 | 900 | 0.3576 | - | - |
1.4362 | 1000 | 0.3563 | 0.2719 | 0.4127 |
1.5796 | 1100 | 0.3186 | - | - |
1.7231 | 1200 | 0.098 | - | - |
1.8666 | 1300 | 0.3038 | - | - |
2.0115 | 1400 | 0.2629 | - | - |
2.1549 | 1500 | 0.3221 | 0.2579 | 0.4155 |
2.2984 | 1600 | 0.2936 | - | - |
2.4419 | 1700 | 0.2867 | - | - |
2.5854 | 1800 | 0.2614 | - | - |
2.7288 | 1900 | 0.0716 | - | - |
2.8723 | 2000 | 0.2655 | 0.2546 | 0.4152 |
3.0172 | 2100 | 0.2187 | - | - |
3.1607 | 2200 | 0.2623 | - | - |
3.3042 | 2300 | 0.2462 | - | - |
3.4476 | 2400 | 0.2363 | - | - |
3.5911 | 2500 | 0.213 | 0.2866 | 0.4227 |
3.7346 | 2600 | 0.0487 | - | - |
3.8780 | 2700 | 0.222 | - | - |
4.0230 | 2800 | 0.1851 | - | - |
4.1664 | 2900 | 0.224 | - | - |
4.3099 | 3000 | 0.2111 | 0.2562 | 0.4215 |
4.4534 | 3100 | 0.1984 | - | - |
4.5968 | 3200 | 0.1707 | - | - |
4.7403 | 3300 | 0.0331 | - | - |
4.8838 | 3400 | 0.1896 | - | - |
5.0287 | 3500 | 0.1548 | 0.2643 | 0.4151 |
5.1722 | 3600 | 0.19 | - | - |
5.3156 | 3700 | 0.1656 | - | - |
5.4591 | 3800 | 0.1626 | - | - |
5.6026 | 3900 | 0.1303 | - | - |
5.7461 | 4000 | 0.0264 | 0.2952 | 0.4186 |
5.8895 | 4100 | 0.1563 | - | - |
6.0344 | 4200 | 0.1286 | - | - |
6.1779 | 4300 | 0.1436 | - | - |
6.3214 | 4400 | 0.1352 | - | - |
6.4648 | 4500 | 0.1344 | 0.2668 | 0.4218 |
6.6083 | 4600 | 0.1069 | - | - |
6.7518 | 4700 | 0.0171 | - | - |
6.8953 | 4800 | 0.1246 | - | - |
7.0402 | 4900 | 0.1074 | - | - |
7.1836 | 5000 | 0.1192 | 0.2837 | 0.4166 |
7.3271 | 5100 | 0.1176 | - | - |
7.4706 | 5200 | 0.111 | - | - |
7.6141 | 5300 | 0.0889 | - | - |
7.7575 | 5400 | 0.0202 | - | - |
7.9010 | 5500 | 0.1059 | 0.2797 | 0.4166 |
8.0459 | 5600 | 0.0854 | - | - |
8.1894 | 5700 | 0.0989 | - | - |
8.3329 | 5800 | 0.0963 | - | - |
8.4763 | 5900 | 0.0967 | - | - |
8.6198 | 6000 | 0.0635 | 0.2974 | 0.4223 |
8.7633 | 6100 | 0.0215 | - | - |
8.9067 | 6200 | 0.0897 | - | - |
9.0516 | 6300 | 0.0693 | - | - |
9.1951 | 6400 | 0.0913 | - | - |
9.3386 | 6500 | 0.0883 | 0.2812 | 0.4171 |
9.4821 | 6600 | 0.0849 | - | - |
9.6255 | 6700 | 0.0525 | - | - |
9.7690 | 6800 | 0.0196 | - | - |
9.9125 | 6900 | 0.0799 | - | - |
10.0574 | 7000 | 0.0603 | 0.2899 | 0.4132 |
10.2009 | 7100 | 0.0816 | - | - |
10.3443 | 7200 | 0.0771 | - | - |
10.4878 | 7300 | 0.0746 | - | - |
10.6313 | 7400 | 0.0373 | - | - |
10.7747 | 7500 | 0.0181 | 0.3148 | 0.419 |
10.9182 | 7600 | 0.0702 | - | - |
11.0631 | 7700 | 0.0531 | - | - |
11.2066 | 7800 | 0.0671 | - | - |
11.3501 | 7900 | 0.0742 | - | - |
11.4935 | 8000 | 0.0728 | 0.2878 | 0.4177 |
11.6370 | 8100 | 0.0331 | - | - |
11.7805 | 8200 | 0.0206 | - | - |
11.9240 | 8300 | 0.0605 | - | - |
12.0689 | 8400 | 0.05 | - | - |
12.2123 | 8500 | 0.06 | 0.3169 | 0.4180 |
12.3558 | 8600 | 0.0613 | - | - |
12.4993 | 8700 | 0.0649 | - | - |
12.6428 | 8800 | 0.0257 | - | - |
12.7862 | 8900 | 0.0184 | - | - |
12.9297 | 9000 | 0.055 | 0.3107 | 0.4189 |
13.0746 | 9100 | 0.0417 | - | - |
13.2181 | 9200 | 0.0537 | - | - |
13.3615 | 9300 | 0.0558 | - | - |
13.5050 | 9400 | 0.0619 | - | - |
13.6485 | 9500 | 0.0217 | 0.3140 | 0.4173 |
13.7920 | 9600 | 0.0257 | - | - |
13.9354 | 9700 | 0.0398 | - | - |
14.0803 | 9800 | 0.041 | - | - |
14.2238 | 9900 | 0.0451 | - | - |
14.3673 | 10000 | 0.0485 | 0.3085 | 0.4188 |
14.5108 | 10100 | 0.0565 | - | - |
14.6542 | 10200 | 0.0159 | - | - |
14.7977 | 10300 | 0.0258 | - | - |
14.9412 | 10400 | 0.0364 | - | - |
15.0861 | 10500 | 0.0368 | 0.3144 | 0.4163 |
15.2296 | 10600 | 0.0447 | - | - |
15.3730 | 10700 | 0.0479 | - | - |
15.5165 | 10800 | 0.0535 | - | - |
15.6600 | 10900 | 0.0139 | - | - |
15.8034 | 11000 | 0.0257 | 0.3149 | 0.4151 |
15.9469 | 11100 | 0.0324 | - | - |
16.0918 | 11200 | 0.0374 | - | - |
16.2353 | 11300 | 0.0339 | - | - |
16.3788 | 11400 | 0.0423 | - | - |
16.5222 | 11500 | 0.0512 | 0.3209 | 0.4164 |
16.6657 | 11600 | 0.0121 | - | - |
16.8092 | 11700 | 0.0245 | - | - |
16.9527 | 11800 | 0.0323 | - | - |
17.0976 | 11900 | 0.0321 | - | - |
17.2410 | 12000 | 0.034 | 0.3211 | 0.4140 |
17.3845 | 12100 | 0.0387 | - | - |
17.5280 | 12200 | 0.0482 | - | - |
17.6714 | 12300 | 0.0096 | - | - |
17.8149 | 12400 | 0.0252 | - | - |
17.9584 | 12500 | 0.0299 | 0.3169 | 0.4170 |
18.1033 | 12600 | 0.0351 | - | - |
18.2468 | 12700 | 0.032 | - | - |
18.3902 | 12800 | 0.0348 | - | - |
18.5337 | 12900 | 0.0452 | - | - |
18.6772 | 13000 | 0.0076 | 0.3273 | 0.4158 |
18.8207 | 13100 | 0.0241 | - | - |
18.9641 | 13200 | 0.0277 | - | - |
19.1090 | 13300 | 0.0331 | - | - |
19.2525 | 13400 | 0.0264 | - | - |
19.3960 | 13500 | 0.0311 | 0.3272 | 0.4151 |
19.5395 | 13600 | 0.0437 | - | - |
19.6829 | 13700 | 0.0049 | - | - |
19.8264 | 13800 | 0.0263 | - | - |
19.9699 | 13900 | 0.0231 | - | - |
20.1148 | 14000 | 0.0303 | 0.3293 | 0.4200 |
20.2582 | 14100 | 0.0229 | - | - |
20.4017 | 14200 | 0.032 | - | - |
20.5452 | 14300 | 0.0395 | - | - |
20.6887 | 14400 | 0.0045 | - | - |
20.8321 | 14500 | 0.0244 | 0.3202 | 0.4144 |
20.9756 | 14600 | 0.0219 | - | - |
21.1205 | 14700 | 0.0291 | - | - |
21.2640 | 14800 | 0.0212 | - | - |
21.4075 | 14900 | 0.029 | - | - |
21.5509 | 15000 | 0.0357 | 0.3312 | 0.4147 |
21.6944 | 15100 | 0.0025 | - | - |
21.8379 | 15200 | 0.0252 | - | - |
21.9813 | 15300 | 0.0229 | - | - |
22.1263 | 15400 | 0.0261 | - | - |
22.2697 | 15500 | 0.0198 | 0.3392 | 0.4123 |
22.4132 | 15600 | 0.0259 | - | - |
22.5567 | 15700 | 0.0343 | - | - |
22.7001 | 15800 | 0.0022 | - | - |
22.8436 | 15900 | 0.0237 | - | - |
22.9871 | 16000 | 0.0199 | 0.3346 | 0.4146 |
23.1320 | 16100 | 0.0263 | - | - |
23.2755 | 16200 | 0.0173 | - | - |
23.4189 | 16300 | 0.0276 | - | - |
23.5624 | 16400 | 0.03 | - | - |
23.7059 | 16500 | 0.0022 | 0.3430 | 0.4195 |
23.8494 | 16600 | 0.0253 | - | - |
23.9928 | 16700 | 0.0182 | - | - |
24.1377 | 16800 | 0.0216 | - | - |
24.2812 | 16900 | 0.0194 | - | - |
24.4247 | 17000 | 0.0242 | 0.3335 | 0.4132 |
24.5681 | 17100 | 0.0289 | - | - |
24.7116 | 17200 | 0.0013 | - | - |
24.8551 | 17300 | 0.0253 | - | - |
24.9986 | 17400 | 0.0137 | - | - |
25.1435 | 17500 | 0.0219 | 0.3481 | 0.4118 |
25.2869 | 17600 | 0.017 | - | - |
25.4304 | 17700 | 0.0261 | - | - |
25.5739 | 17800 | 0.0298 | - | - |
25.7174 | 17900 | 0.0013 | - | - |
25.8608 | 18000 | 0.0257 | 0.3407 | 0.4160 |
26.0057 | 18100 | 0.014 | - | - |
26.1492 | 18200 | 0.0215 | - | - |
26.2927 | 18300 | 0.0161 | - | - |
26.4362 | 18400 | 0.0228 | - | - |
26.5796 | 18500 | 0.0246 | 0.3404 | 0.4131 |
26.7231 | 18600 | 0.0017 | - | - |
26.8666 | 18700 | 0.0244 | - | - |
27.0115 | 18800 | 0.0124 | - | - |
27.1549 | 18900 | 0.019 | - | - |
27.2984 | 19000 | 0.0151 | 0.3451 | 0.4139 |
27.4419 | 19100 | 0.0216 | - | - |
27.5854 | 19200 | 0.0255 | - | - |
27.7288 | 19300 | 0.0016 | - | - |
27.8723 | 19400 | 0.0251 | - | - |
28.0172 | 19500 | 0.0133 | 0.3416 | 0.4109 |
28.1607 | 19600 | 0.016 | - | - |
28.3042 | 19700 | 0.0186 | - | - |
28.4476 | 19800 | 0.0185 | - | - |
28.5911 | 19900 | 0.0225 | - | - |
28.7346 | 20000 | 0.0009 | 0.3463 | 0.4144 |
28.8780 | 20100 | 0.0249 | - | - |
29.0230 | 20200 | 0.0132 | - | - |
29.1664 | 20300 | 0.0145 | - | - |
29.3099 | 20400 | 0.0174 | - | - |
29.4534 | 20500 | 0.0172 | 0.3425 | 0.4092 |
29.5968 | 20600 | 0.0235 | - | - |
29.7403 | 20700 | 0.0009 | - | - |
29.8838 | 20800 | 0.0242 | - | - |
30.0287 | 20900 | 0.0128 | - | - |
30.1722 | 21000 | 0.0133 | 0.3482 | 0.4131 |
30.3156 | 21100 | 0.0158 | - | - |
30.4591 | 21200 | 0.0226 | - | - |
30.6026 | 21300 | 0.0188 | - | - |
30.7461 | 21400 | 0.0009 | - | - |
30.8895 | 21500 | 0.0249 | 0.3483 | 0.4132 |
31.0344 | 21600 | 0.0116 | - | - |
31.1779 | 21700 | 0.0117 | - | - |
31.3214 | 21800 | 0.0162 | - | - |
31.4648 | 21900 | 0.0184 | - | - |
31.6083 | 22000 | 0.0178 | 0.3390 | 0.4145 |
31.7518 | 22100 | 0.0012 | - | - |
31.8953 | 22200 | 0.0215 | - | - |
32.0402 | 22300 | 0.014 | - | - |
32.1836 | 22400 | 0.0105 | - | - |
32.3271 | 22500 | 0.0131 | 0.3556 | 0.4144 |
32.4706 | 22600 | 0.0199 | - | - |
32.6141 | 22700 | 0.0158 | - | - |
32.7575 | 22800 | 0.0018 | - | - |
32.9010 | 22900 | 0.0236 | - | - |
33.0459 | 23000 | 0.0131 | 0.3480 | 0.4136 |
33.1894 | 23100 | 0.0121 | - | - |
33.3329 | 23200 | 0.0164 | - | - |
33.4763 | 23300 | 0.0209 | - | - |
33.6198 | 23400 | 0.0119 | - | - |
33.7633 | 23500 | 0.0029 | 0.3575 | 0.4180 |
33.9067 | 23600 | 0.0201 | - | - |
34.0516 | 23700 | 0.0121 | - | - |
34.1951 | 23800 | 0.0109 | - | - |
34.3386 | 23900 | 0.0132 | - | - |
34.4821 | 24000 | 0.0203 | 0.3446 | 0.4141 |
34.6255 | 24100 | 0.0087 | - | - |
34.7690 | 24200 | 0.0032 | - | - |
34.9125 | 24300 | 0.0182 | - | - |
35.0574 | 24400 | 0.0116 | - | - |
35.2009 | 24500 | 0.0105 | 0.3587 | 0.4117 |
35.3443 | 24600 | 0.018 | - | - |
35.4878 | 24700 | 0.0194 | - | - |
35.6313 | 24800 | 0.0076 | - | - |
35.7747 | 24900 | 0.0029 | - | - |
35.9182 | 25000 | 0.0167 | 0.3529 | 0.4156 |
36.0631 | 25100 | 0.0105 | - | - |
36.2066 | 25200 | 0.0097 | - | - |
36.3501 | 25300 | 0.0165 | - | - |
36.4935 | 25400 | 0.0187 | - | - |
36.6370 | 25500 | 0.0062 | 0.3517 | 0.4173 |
36.7805 | 25600 | 0.0034 | - | - |
36.9240 | 25700 | 0.0173 | - | - |
37.0689 | 25800 | 0.0091 | - | - |
37.2123 | 25900 | 0.0093 | - | - |
37.3558 | 26000 | 0.0152 | 0.3605 | 0.4147 |
37.4993 | 26100 | 0.0193 | - | - |
37.6428 | 26200 | 0.0065 | - | - |
37.7862 | 26300 | 0.0036 | - | - |
37.9297 | 26400 | 0.017 | - | - |
38.0746 | 26500 | 0.009 | 0.3627 | 0.4178 |
38.2181 | 26600 | 0.0087 | - | - |
38.3615 | 26700 | 0.0129 | - | - |
38.5050 | 26800 | 0.0199 | - | - |
38.6485 | 26900 | 0.0047 | - | - |
38.7920 | 27000 | 0.0104 | 0.3535 | 0.4191 |
38.9354 | 27100 | 0.0106 | - | - |
39.0803 | 27200 | 0.0083 | - | - |
39.2238 | 27300 | 0.0091 | - | - |
39.3673 | 27400 | 0.0143 | - | - |
39.5108 | 27500 | 0.018 | 0.3586 | 0.4137 |
39.6542 | 27600 | 0.0055 | - | - |
39.7977 | 27700 | 0.0097 | - | - |
39.9412 | 27800 | 0.0111 | - | - |
40.0861 | 27900 | 0.0091 | - | - |
40.2296 | 28000 | 0.009 | 0.3540 | 0.4166 |
40.3730 | 28100 | 0.0145 | - | - |
40.5165 | 28200 | 0.0165 | - | - |
40.6600 | 28300 | 0.0041 | - | - |
40.8034 | 28400 | 0.009 | - | - |
40.9469 | 28500 | 0.0091 | 0.3541 | 0.4159 |
41.0918 | 28600 | 0.0106 | - | - |
41.2353 | 28700 | 0.0064 | - | - |
41.3788 | 28800 | 0.0125 | - | - |
41.5222 | 28900 | 0.0172 | - | - |
41.6657 | 29000 | 0.0028 | 0.3550 | 0.4151 |
41.8092 | 29100 | 0.0097 | - | - |
41.9527 | 29200 | 0.0086 | - | - |
42.0976 | 29300 | 0.0099 | - | - |
42.2410 | 29400 | 0.0064 | - | - |
42.3845 | 29500 | 0.0127 | 0.3619 | 0.4150 |
42.5280 | 29600 | 0.0157 | - | - |
42.6714 | 29700 | 0.0025 | - | - |
42.8149 | 29800 | 0.0095 | - | - |
42.9584 | 29900 | 0.0087 | - | - |
43.1033 | 30000 | 0.0094 | 0.3591 | 0.4153 |
43.2468 | 30100 | 0.007 | - | - |
43.3902 | 30200 | 0.0114 | - | - |
43.5337 | 30300 | 0.0166 | - | - |
43.6772 | 30400 | 0.0023 | - | - |
43.8207 | 30500 | 0.01 | 0.3582 | 0.4172 |
43.9641 | 30600 | 0.0097 | - | - |
44.1090 | 30700 | 0.01 | - | - |
44.2525 | 30800 | 0.007 | - | - |
44.3960 | 30900 | 0.0106 | - | - |
44.5395 | 31000 | 0.0164 | 0.3626 | 0.4151 |
44.6829 | 31100 | 0.0017 | - | - |
44.8264 | 31200 | 0.0113 | - | - |
44.9699 | 31300 | 0.0081 | - | - |
45.1148 | 31400 | 0.0095 | - | - |
45.2582 | 31500 | 0.0061 | 0.3669 | 0.4152 |
45.4017 | 31600 | 0.0111 | - | - |
45.5452 | 31700 | 0.0157 | - | - |
45.6887 | 31800 | 0.0015 | - | - |
45.8321 | 31900 | 0.0109 | - | - |
45.9756 | 32000 | 0.0085 | 0.3595 | 0.4139 |
46.1205 | 32100 | 0.0096 | - | - |
46.2640 | 32200 | 0.0062 | - | - |
46.4075 | 32300 | 0.0111 | - | - |
46.5509 | 32400 | 0.017 | - | - |
46.6944 | 32500 | 0.0013 | 0.3631 | 0.4154 |
46.8379 | 32600 | 0.0123 | - | - |
46.9813 | 32700 | 0.0076 | - | - |
47.1263 | 32800 | 0.0088 | - | - |
47.2697 | 32900 | 0.0065 | - | - |
47.4132 | 33000 | 0.0116 | 0.3656 | 0.4148 |
47.5567 | 33100 | 0.0142 | - | - |
47.7001 | 33200 | 0.0009 | - | - |
47.8436 | 33300 | 0.0101 | - | - |
47.9871 | 33400 | 0.0069 | - | - |
48.1320 | 33500 | 0.0087 | 0.3643 | 0.4160 |
48.2755 | 33600 | 0.005 | - | - |
48.4189 | 33700 | 0.0118 | - | - |
48.5624 | 33800 | 0.0147 | - | - |
48.7059 | 33900 | 0.0008 | - | - |
48.8494 | 34000 | 0.0115 | 0.3632 | 0.4158 |
48.9928 | 34100 | 0.006 | - | - |
49.1377 | 34200 | 0.0089 | - | - |
49.2812 | 34300 | 0.0063 | - | - |
49.4247 | 34400 | 0.0126 | - | - |
49.5681 | 34500 | 0.0142 | 0.3643 | 0.4157 |
49.7116 | 34600 | 0.0008 | - | - |
49.8551 | 34700 | 0.0137 | - | - |
49.9986 | 34800 | 0.0044 | 0.3148 | 0.4190 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.43.3
- PyTorch: 2.3.1+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}